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Frontispiece-Space shuttle view of the Zimbabwe Craton. [Photo no. $08-33-0997]
Geological information provided by A. Martin, Cluff Mineral Exploration, Ltd., Harare,
Zimbabwe.
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Introduction
1

Background

Greenstone belts include some of the oldest rocks on Earth;

consequently, they can provide us with direct evidence of Earth

processes taking place as much as 3.7 Ga ago, and represent a

foundation with which to begin an understanding of prior events

during the first 800 Ma of Earth history. Greenstone belts also

provide an anchor for those who wish to extrapolate back in time

to understand the secular variations and/or punctuated patterns

of 3.7 Ga of Earth evolution represented in the rock record.

Despite this important aspect of greenstone belts, they are

relatively little understood: there is not even a good definition of

greenstone belts, and there is no agreement about the time span

they occupy during Earth history. Until recently, greenstone belts

were thought of as extremely thick stratigraphic sections of mafic-

ultramafic lavas, with lesser sediments and felsic volcanics,

metamorphosed at greenschist facies, and engulfed as synclines in

u o,_n ,.,, ,, ,,, uu,_u _ a_.tu,u p_utu_. Their overau snape and

tectonic style was thought to be due to density inversions and

diapirism, the inferred result of an unstable configuration of sialic

crust overlain by a dense simatic layer. Vertical Archean tectonics

reigned over a lenghthy period during which the term "schist

belt," as previously applied to greenstone belts, faded into the

background. This enhanced the impressions that greenstone belts

had been little affected by the sort of penetrative strains and

tectonism that we are accustomed to seeing in Phanerozoic

mountain belts. Over the last decade, however, the simplistic

models of greenstone belts have not stood up to an onslaught of

modem structural and geochemical investigations in many parts

of the world. The message that has slowly emerged is that if we

want to understand the secrets that greenstone belts hold to

unraveling our planet's evolutionary blueprint, we must work hard

for it: foremost in the field, with modem follow-up work in well-

equipped laboratories. Greenstone belts are now being shown to

be extremely complicated, far more so than even the staunchest

uniformitarians would have predicted ten years ago. Foremost in

revealing their original stratigraphic and geochemical signatures

are structural and tectonic studies--those that endeavor to

unstrain and restore the rock components of these belts to their

primary dispositions. Understanding the tectonic evolution of

greenstone belts will open vast horizons for those interested in

the Archean siderosphere, asthenosphere, lithosphere,



hydrosphere,atmosphere,and biosphere.The rationaleof the
workshopwas to set these tectonic studieson firmer footing.The
meetingwaspart of NASA's EarlyCrustal GenesisProject,
administeredby the Lunar and PlanetaryInstitute.

Outline and Structure of the Workshop

It was decided at the outset that the focus of the workshop

would be "tectonics," broadly clefined, and contributors were

encouraged to integrate their ideas and data accordingly. The

conveners invited ten researchers to team up in four groups to

present four keynote review talks and highlight significant

problems and new avenues for solutions. Both poster

presentations and student participation were strongly

encouraged.

The workshop was attended by eighty-six scientists from six

continents. Results of research on greenstone belts fr6m most

major Archean cratons were presented: North and South

America, Africa, India, and Australia (Fig. 1). About half of the

contributions were in the form of posters, and about 15% of the

participants were students. Based on the abstracts submitted, the

oral program was divided into three sessions: (1) rock

components, sources, provenances, and structures; (2) magmas,

heat flow, fluids, and strain; and (3) boundaries, surrounding rock

terranes, and their relationships. Lengthy discussion times (30-45

minutes) were interspersed between invited and contributed talks.

All of these sessions were recorded on videotape. Well-lubricated

evening sessions were reserved for viewing the poster

presentations and for meetings of working groups, during which

participants were asked to evaluate critically the data and ideas

presented, and outline future research plans. The final session

consisted of working group reports, technical summaries by a few

spokespeople selected by the conveners, and further extensive

discussion.

Results of the Workshop

The conveners consider the following major points to have

emerged from the workshop:

1. Most greenstone belts are severely tectonized.

2. Greenstone belts occur at metamorphic grades varying from

subgreenschist to granulite facies.

3. A single tectonic environment applicable to greenstone belts

does not exist; different tectonic enviroments can be found within



Pangea Circa 200 Ma.
Van der Grinten Projection
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Fig. 1 Distribution of Precambrian terranes from which Greenstone Belts were described
at this workshop.

1. Slave Province

2. Superior Province (Including Minnesota, USA)

3. Wind River Mountains (Wyoming)

4. Cape Smith Belt

5. West African Shield

6. Guyana Craton )

7. Central Brazil Craton I Amazonian Shield

8. Southern African Shield (Including the Zimbabwean
Craton, the Kaapvaal Cratons, and the Limpopo Mobile Belt)

9. Indian Shield

10. Yilgarn Craton

11. Pilbara Craton



and among greenstone belts. Typically, greenstone belts contain

mixtures of components from different tectonic environments.

4. Many of their features can be explained in the framework of

plate tectonics.

5. Different cratons may be dominated by greenstone belts of

broadly differing tectonic regimes.

6. The volume of komatiite in greenstone belts has probably been

overestimated.

7. The MgO content of liquids parental to komatiites was likely

less than 27%.

8. Compositions of rocks in many greenstone belts have been

highly affected by metasomatism.

9. Overall structures of greenstone belts may not be related to

granitoid diapirism; there may be a more subtle relationship

between horizontaltectonicsand granitoidplutonism.

I0.Interpretationsof criticalfieldrelationshipsare commonly

equivocal.

Both presentations and discussions were highly stimulating and

educational for all. An extensive summary of the technical

sessions, prepared from the videotapes*, is included in this

report. Also included are reports of the Working Groups,

disciplinary summaries, and both invited and contributed

abstracts. We hope this document will serve to foster new

research on greenstone belts.

Maarten J. de Wit

Lewis D. Ashwal

Houston, Texas

March, 1986

*Videotapes can be viewed at LPI or copies purchased on

request.
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II. Program
Thursday, January 16, 1986

8:30 a.m.--12:30 p.m.

SESSION l--Greenstone Belts: Rock Components, Sources, Provenances, and Structures
Chairman: L. D. Ashwal

Welcoming remarks
K. Burke*

Greenstone belt tectonics: Some relevant outstanding questions

M. d. de Wit* and L. D. Ashwai

Invited Keynote Talks

The rock components and structure of Archean greenstone belts
D. R. Lowe* and G. R. Byerly

Greenstone belts: Their components and structure
d. R. Veamcombe*, ,I. M. Barton, Jr., D. D. van Reenen, and G. N. Phillips

Discussion

Break

Contributed Papers

Preliminary structural model for the southwestern part of the Michipicoten greenstone belt, Ontario
G. E. McGill* and C. H. Shrady

Transpression as the main deformational event in an Archean greenstone belt, Northeastern Minnesota
P. ,I. Hudleston*, D. Schultz-Ela, R. L. Bauer, and D. Southwick

Archean wrench-fault tectonics in the Abitibi greenstone belt of Canada
C. Hubert* and d. N. Ludden

Discussion

Sedimentological and stratigraphic evolution of the Southern part of the Barberton greenstone belt: A case
of changing provenance and stability

D. R. Lowe* and G. R. Byerly

Barberton greenstone belt volcanism: Succession, style and petrogenesis
G. R. Byerly* and D. R. Lowe

Discussion

SESSION I (continued)

Chairman: W. S. F. Kidd
2:00-5:30 p.m.

Dismembered Archean ophiolite in the southeastern Wind River Mountains, Wyoming: Remains of
Archean oceanic crust

G. Harper*
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Evidence for spreading in the Lower Kain group of the Yellowknife greenstone belt: Implications for
Archean basin evolution in the Slave Province

H. Helmstaedt* and W. A. Padgham

Discussion

Zircon Lu-Hf systematics: Evidence for the episodic development of greenstone belts

E. Smith*, M. Tatsumoto, and R. M. Farquhar

Rhyolitic components of the Michipicoten greenstone belt, Ontario: Evidence for late Archean
intracontinental rifts or convergent plate margins in the Canadian Shield?

P. J. Sylvester*, K. Attoh, and K. Schultz

Discussion

Break

The western Wabigoon subprovince, Superior Province, Canada: Late Archean greenstone succession in a

rifted basement complex
G. R. Edwards* and D. W. Davis

A continental rift model for the La Grande greenstone belt

T. Skulski*, A. Hynes, M. Liu, D. Francis, B. Rivard, and K. Slamatelopoulou-Seymore

Discussion

Evidence for structural stacking and repetition in the greenstones of the Kalgoorlie District, Western
Australia

d. E. Martyn*

A simple tectonic model for crustal accretion in the Slave Province: A 2.7-2.5 Ga "Granite-greenstone"

terrane, N.W. Canada

P. F. Hoffman*

Discussion

Poster and Keg Session--7:00-11:00 p.m.

Friday, January 17, 1985

8:30 a.m.-12:30 p.m.

SESSION ll--Greenstone Belt Externalities: Magmas, Heat Flow, Fluids and Strain

Chairman: K. Burke

Invited Keynote Talk
Greenstone belt tectonics--thermal constraints

M. Bickle* and E. G. Nisbet

Contributed Papers

Volcanologic constraints on Archean tectonics

P. C. Thurston* and L. D. Ayres

Komatiite genesis in the Archean mantle, with implications for the tectonics of Archean greenstone belts
D. Elthon*



Archean megacrystic plagioclase units and the tectonic setting of greenstones
W. C. Phinney*, D. A. Morrison, and D. Maczuga

Discussion

The dehydration, rehydration and tectonic setting of greenstone belts in a portion of the Northern
Kaapvaal Craton, South Africa

D. D. van Reenen _, d. M. Barton, C. Roering, d. C. van Schalkuyk, C. A. Smith, d. H. de Beer, and
E. H. Stettler

Discussion

Break

Thermal implications of metamorphism in greenstone belts and the hot asthenosphere--thick lithosphere
paradox

P. Morgan*

Hot spot abundance--rid_ subduction, and the evolution of greenstone belts
D. Abbott* and S. Hoffman

Discussion

2:00-5:00 p.m.
SESSION lll--Greenstone Belts: Their Boundaries, Their Surrounding Rock Terranes and Their

Interrelationships
Chairman: P. F. Hoffman

Invited Keynote Talk
Greenstone belts: Their boundaries, surrounding rock terrains, and interrelationships

d. A. Percival* and K. D. Card

Contributed Papers
New insights into typical Archean structures in greenstone terranes of Western Ontario

W. M. Schwerdtner*

Correlations and contrasts in structural history and style between an Archean greenstone belt and adjacent
gneiss belt, NE Minnesota

R. L. Bauer*, P. d. Hudleston, and D. L. Southwick

The stratigraphy of the Steep Rock Group, NW Ontario, with evidence of a major unconformity
M. E. Wilks* and E. G. Nisbet

Discussion

Break

A continuous record of tectonic evolution from 3.5 Ga to 2.6 in Swaziland and Northern Natal

D. R. Hunter, A. H. W/Ison*, d. A. Versfelt, A. R. Allen, R. G. Smith, D. W.. W. Sleigh, P. B. Groenewald,
G. M. Chutter, and V A. Preston

The Yilgam Craton, Western Australia: A tectonic synthesis
R. E. P. Fripp*



Geochemical characters and tectonic evolution of the Chitradurga schist belt: An Archean suture (?) of the

Dharwar Craton, India
S. M. Naqvi*

Kolar schist belt: A possible Archean suture zone
G. N. Hanson, E. d. Krogstad*, V. Rajamani, and S. Balakrishnan

Discussion

WORKING GROUP SESSIONS
7:00 p.m.-9:00 p.m.

Working Group 1--- Hess Room
Working Group ll--Berkner Room

Saturday, January 18, 1986
9:30 a.m.--12:30 p.m.

SESSION IV--Research in Greenstone Belt Tectonics: Synthesis and Destiny
Chairman: L. D. Ashwal

Technical assessment by spokesperson(s)
Working Group I

Technical assessment by spokesperson(s)
Working Group I1

Discussion

Summarizers

P. J. Wyllie: A Petrologic Viewpoint
D. W. Davis: A Geochronological Viewpoint
E. G. Nisbet: A Sedimentological Viewpoint
R. E. Po Fripp: A Structural Viewpoint
B. Gorman: An Ore Deposits Viewpoint
L Losier: A Geophysical Viewpoint
P. Morgan: A Thermal Viewpoint
K. Burke: A Tectonic Viewpoint

*Denotes speaker.

Poster Presentations

(Open throughout the Workshop)

7:00 p.m.-ll:00 p.m.,
Thursday, January 16, 1986

Group A--Northern Hemisphere--Reception Area, LPI

(i) Tectonic setting and evolution of Late Archean greenstone belts of Superior Province, Canada
K. D. Card

(2) Geophysical characteristics and crustal structure of greenstone terranes, Canadian Shield
M D. Thomas, L. Losier, P. C. Thurston, V. K. Gupta, R. A. Gibb, and R. A. F Grieve



(3) High precision U-Pb geochronology and implicationsfor the tectonic evolution of the Superior Province
D. W. Dauis, E Corfu, and T. E. Krogh

(4) Age constraints on the evolution of the Quetico Belt, Superior Province
J. A. Perciual and R. W. SuUiuan

(5) Rainy Lake wrench zone: An example of an Archean subprovinceboundary in Northwestern Ontario
14,.H. Poulsen

(6) Deformational sequenceof a portion of the Michipicoten greenstone belt, Chabanel Township, Ontario
C. H. Shrady and G. E. McGill

(7) A new 1:1,000,000 geologic map of Slave Province and early Proterozoic bounding origins

P. Hoffrnan

(8) Is the Cameron River greenstone belt allochthonous?
T. M. Kusky

(9) Basement-cover relations and internal structure of the Cape Smith klippe: A 1.9 Ga greenstone belt in
Northern Quebec, Canada

M. R. St-Onge, P. Hoffrnan, S. B. Lucas, D. J. Scott, and N. J. Begin

Group B--Southern Hemisphere--Hess Room, LP!

(10) A continuous record of tectonic evolution from 3.5 Ga to 2.6 Ga in Swaziland and Northern Natal
D. R. Hunter, A. H. Wilson, d. A. VersJelt, A. R. Allen, R. G. Smith, D. W. W. Sleigh,
P. P. Groenetoaid, G. M. Chutter, and V. A. Preston

(11) Crustal structure of the Archean granite-greenstone terrane in the northern portion of Kaapvaal Craton
J. H. de Beer, E. H. Stettler, d. M. Barton, Jr., D. D. uan Reenen, and R. R. Vearncombe

(12) Two contrasting metamorphosed ultramafic-mafic complexes from greenstone belts, the northern
Kaapvaal Craton and their significance in Archean tectonics

C. A. Smit and J. R. Vearncombe

(13) The dehydration, rehydration and tectonic setting of greenstone belts in a portion of the Northern
Kaapvaal Craton, South Africa

D. D. uan Reenen, J. M. Barton, Jr., C. Roering, J. C. uan Schalkwyk, C. A. Smit, J. H. de Beer,
and E. H. Stetfler

(14) A mid-Archean ophiolite complex, Barberton Mountain Land
M. d. de Wit, R. Hart, and R. Hart

(15) Extensional tectonics during the igneous emplacement of the mafic-ultramalic rocks of the Barberton
greenstone belt

M. d. de Wit

(16) Felsic igneous rocks within the Barberton greenstone belt: High crustal level equivalents of the
surrounding tonalite-trondjemite terrain, emplaced during thrusting

M. d. de Wit and A. H. Wilson

(17) Polyphase thrust tectonics in the Barberton ffreenstone belt
I. Pads



10

(18)Synsedimentary deformation and thrust tectonics on the eastern margin of the Barberton greenstone
belt

S. Lamb

(19) Geological evolution of the Pietersburg greenstone belt, South Africa and associated gold mineralization
M. G. Jones and M. d. de Wit

(20) Geochemical and isotopic constraints on the tectonic setting of the Serra dos Carajas Belt, Eastern Para,
Brazil

W. J. Olszewski, A. I4. Gibbs, and K. R. Wirth

(21) Tectonics of some Amazonian greenstone belts
A. K. Gibbs

(22) Lithology, age and structure of early Proterozoic greenstone belts, West African shield
K. Attoh

(23) Overview of greenstone belts in the Pilbara (Australia) and of the Belingwe greenstone belt (Zimbabwe)
M. Bickle and E. G. Nisbet

Print Only Abstracts

Spatial greenstone-gneiss relationships: Evidence from mafic-ultramafic xenolith distribution patterns
A. Y Glikson

A palaeomagnetic perspective of Precambrian tectonic styles
P. W. Schmidt and B. J. J. Embleton

Easy Precambrian crustal evolution of India
R. Srinivasan

Can trace elements distribution reclaim tectonomagmatic facies of basalts in greenstone assemblages?
J. C. Butler

Greenstone belts are not intracontinental rifts. What then are they?
K. Burke and C. Sengor

Heat flow and heat generation in greenstone belts
M. J. Drury

Tectonic evolution of greenstone-gneiss association in Dharwar Craton, South India: Problems and

perspectives for future research
Y. J. Bhaskar Rao

Preliminary report on the geology and gold mineralization of the South Pass granite-greenstone terrain,
Wind River Mountain, Western Wyoming (USA)

W. Dan Hausel

Felsic volcaniclastic rocks in the 3.3 to 3.5 Ga Warrawoona Group, Pilbara block, Western Australia:

Depositional setting and crustal evolution
M. J. Di Marco and D. R. Lowe
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III. Tectonic Evolution of Greenstone Belts: Some Relevant
Outstanding Questions

Maarten J. de Wit and Lewis D. Ashwai

These are some relevant questions that emerge from the
set of abstracts received for the workshop; these questions
could be used to focus the discussions of the workshop. We
would like the participants to assess these questions critically
and to modify, reformulate, and if possible answer some of
them during the workshop sessions. Can more important

questions be formulated?. These same questions could also serve
as guidelines for the Working Groups when they meet to
overview the data presented at the workshop and to outline
avenues for future research in the tectonics of greenstone belts.

1. Should we be seeking a unified tectonic environment for
allgreenstone belts, or do greenstone belts represent a spectrum
of tectonic environments? How can we identify those settings?
Are greenstone belts part of more extensive orogens? Are
greenstone belts allochthonous? How do we prove/disprove
this?

2. Are the older Archean greenstone belts (i.e., Selukwe,
Barberton, Pietersburg, Nondweni, Pilbara, Isua) different from
the later Archean belts? If so, in what respect? There is very
!i.".!ecompaed dataon thequanfita_'_tlxeestimatesofrnc.k_.types

withinthe greenstonebelts:a first-orderobjective.Moreover,

becauseitisnow clearthatmany greenstonebeltsaretectonic

melanges,can we attachsignificancetothepresence/absence

ofparticularrocktypesingroupsofgreenstonebelts?

3.Are greenstonebeltsthrustcomplexes;how important

islatestrike-slipmotion?There isa growingdatabaseindicating

extensivedeformationand tectonismin the form of faulting

and complexfolding.How do we recognizesignificantthrusting

withoutfossilsand resolvablechronologicalconstraints?How

reliableare the stratigraphicmodels thatwere predominantly

built-uppriorto the recognitionofthrust-tectonics?How do

we constructa reliablestratigraphyin the faceof so few
constraints?

4. Greenstone belts appear to have complex tectonic
histories. Do they record Wilson cycles? If so, how would we
recognize suture zones, particularly if greenstone belts are
allochthonous? Are any greenstone belts fossil rifts
(aulochogens)?

5. What do the sedimentary rocks in greenstone belts tell
us about their tectonics? How can we determine the depth
of deposition of Archean sediments? Are sedimentary rock
assemblages in greenstone belts distinctive? What can their
provenances tell us about earlier crustal history?

6. Do the simatic rocks of some greenstone belts contain
ophiolites or fragments thereof?. Sheeted intrusives have now
been described from one early and two late Archean greenstone
belts. Sheeted dykes are the most persuasive evidence for the

presence of an ophiolite-like sequence in Phanerozoic orogens.
Are gabbros or norites less common in these sections than
in Phanerozoic ophiolites, and if so, does this indicate that
intermediate stage magma chambers were less abundant during
the formation of Archean oceanic crust? That might reflect

more efficient spreading in the Archean relative to today.

7. Do the Archean simatic rocks represent Archean ocean
crust or marginal basin crust? Can we use these rock sequences
to reconstruct sections through the Archean oceanic crust,
or do they merely represent obducted parts of specific oceanic
tectonic regimes? Are there enough greenstone belts preserved
to confidently reconstruct Archean oceanic-crust sections?

8. Komatiites: What is the tectonic signifcance of their
abundance in the Archean compared to younger terranes? Are
all komatiites extrusives? Could they also be sills or dikes?
To what extent have they been affected by cumulus processes?

What is the highest MgO content ofliquids parental to komatiites
(estimates range from 18-33%)? What was the degree of partial
melting of the mantle to produce these komatiites (estimates
range from 10-80%)? These problems have a great bearing on
the temperatures of the Archean mantle and erupting of Archean
v01canics and hence on Archean surface tectonics and

lithosphere structures. Peripherally (for this workshop), it also
bears on the problem of Archean asthenosphere physics: Was
there a deep magma ocean?

q. Calcic, megacrystic anorthosites are another rock type
unique to the Archean. Can these provide clues to the physics
and chemistry of Archean magmatic processes? What was their
tectonic setting?

10. Was Archean oceanic crust extensively hydrated during

its formation or during later metamorphism? To what extent
has the chemistry of this crust been altered by these processes?
Are komatiite compositions tricking us?There are no completely
fresh komatiites in greenstone helts--most are serpentinites.
To what extent is their high MgO content a reflection of their
igneous character rather than a metasomatic overprint? Are
all spinifex textures igneous or are some metamorphic? How
do we distinguish them?

11. What is the density of the simatic rocks in greenstone
belts if the komatiites are in realityserpentinites and the tholeiites
like spilites? What is the density of various greenstone belts?
What was their density prior to dehydration during granitoid
intrusions?

12. What is the relationship between the greenstone belts,
the granite terranes, and the "grey-gneiss" (or Na-granitoid

gneiss) complexes? Are there links between the silicic to

intermediate volcanic rock sequences within the greenstone
belts and the surroundings granitoid terranes?

13. Did hydrated simatic rocks of greenstone belts yield the
tonalite-trondjhemitegranitoids when buried to specificdepths?
If so,how deep, andwas thisa tectonic burial (i.e., by subduction
orobducfion processes) or by continuous volcanic loading?

14. DO granite-greenstone terranes represent successive
large-scale tectonic additions around cratonic nuclei? Is there
aprogressiveyounging of greenstone belts acrossshields?What
are the age relationships among greenstone belts of different

metamorphic grades (where exposed across deep crustal
structuressuch as in the Superior Province, South Indian shield,

and the North Kaapvaal craton)?
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15. Given a higher Archean radioactive heat production, how
was this most efficiently dissipated from the planet? Were
Archean mantle temperatures similar to those today (given a

greater rate of tectonic processes like spreading) or was the
Archean mantle substantially hotter? Did the Earth have a

greater total length of spreading ridge or was spreading faster?
Was the effective heat loss punctuated, or episodic?

16. Was the average oceanic Archean oceanic crust hotter,
younger, and less dense than the average oceanic crust today?
If so, how did this affect global-scale tectonics? For example,
if there was subduction, was it of shallow-angle type? If the
oceanic crust was of very low density, would it have resisted
subduction to form interoceanic thrust complexes? Either
process could theoretically produce vast amounts of tonalites.
Can the geology of the granite-greenstone belt terranes help
to distinguish between such processes?

17. Is the abundance of greenstone belts relative to granite-
gneiss complexes in Archean terranes geologically represen-
tative, or has there been selective preservation of certain rock
types and assemblages?

18. What can greenstone belts tell us about the size and
distribution of Archean cratons and their lithospheric thickness?
Was a thick lithosphere and/or tectosphere the rule or the
exception on the Archean Earth? Did Archean continental crust
form part of large supercontinents that broke up more frequently
than in the Phanerozoic, or was the Archean Earth covered

by a multitude of plates carrying continental "icebergs"?.



IV. Summaries of Technical Sessions
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M. J. de Wit and L. D. Ashwal

The followingsummaries were prepared from the submitted-
abstracts and from videotapes of the sessions. We apologize
to those whose comments were inaudible, and to those who

we may have misinterpreted.
After welcoming comments by LPI Director Kevin Burke and

a general outline of the workshop by Chairman Lew Ashwal,
Maarten de Wit opened the technical sessions with an
introductory talk outliningsome of the major questions pertinent
to greenstone belt tectonics that he and Ashwal formulated.
These 18 questions are outlined inSection II1.De Wit attempted
to focus the major issues to be dealt with at the workshop

by illustrating numerous of these questions with examples from
the Barberton greenstone belt of South Africa. In so doing,
he introduced question (1), which deals with the possibility that

greenstone belts from different cratons may have different
features, and represent different tectonic settings. His next

point, applicable to questions (2) and (3), concerned the
deformational aspects of greenstone belts. He showed slides
of two types of large amplitude folds. Both early recumbent

and later upright-style folds are associated with major thrust
faults and locally with extensive flattening deformation. The

L _l.t...-'.I.LBarberton beit can be "' ' a ............. L,_,_w,,,conslaereo iUl(.I-dllU-U11ut_t
the main tectonic transport having taken place from southeast
to northwest. In the northern part of the belt, Barberton was

thrust over granitoids, whereas in the south, sedimentation was
taking place concurrently. Strike-slip motions are more evident
in greenstone belts other than Barberton. The next question
(question (6)) related to whether greenstone belts contain
ophiolites. He showed spectacular examples of pillow lavas,
and pointed out the ambiguity of using them to determine
younging directions. Gabbros with cumulate textures are also
present, and these have layering orthogonai to that of
surrounding mafic-ultramafic layering. This raised the question
(question (8)) of the intrusive vs. extrusive nature of komafiites.
Slides were also shown of mafioultramafics with deformational

textures, possibly equivalent to ultramafic tectonites found
stratigraphically at the lower most positions in ophiolites. He
also showed fine examples of sheeted dike or sill complexes,
with both one-way and two-way chilling features. Small chert
remnants occur in places between crosscutting intrusives.

Regarding the relationship of the felsic volcanicsof greenstone
belts to surrounding granitoid plutons (question (12)), de Wit

pointed out that Barberton dacites and rhyolites have similar
light REE-enriched patterns to surrounding tonalites, precluding
an originby simplefractionation from mafic-ultramafic volcanics,
which have fiat REE patterns. An origin by partial melting of

the (hydrated) mafic volcanics is permissible, if garnet is retained
as a residual phase. De Wit stated that the model he and
coworkers favor for Barberton involves thrusting of simatic crust
over a hot, granitoid-plutonic environment, leading to

syntectonic granitoid gneisses at the contacts with the
greenstones, and silicicmagmas emplaced into mafic rocks along
thrust zones from which silicic volcanics were erupted
subaerially. De Wit next considered the compositions of
komatiites (question (10)), showing diagrams with good

correlations between MgO and H20 (which ranges from 2-

16%)for Barberton mafic and ultramafic rocks. Compositions

ofolivinesfrom both spinifex- and cumulate-textured komatiites
plot along 100% olivine accumulation lines; de Wit therefore
suggested that these rocks have been affected by olivine
accumulation and/or major Mg-metasomatism. As a result of
this extensive alteration and hydration, the mafic and specifically
the ultramafic rocks have very low densities. This observation
led on to question (11). De Wit calculates that the bulk density
of the Barberton belt, assuming an approximate ratio of spilite
and serpentinite of 4:1, is about 2.67 grn/cm 3, essentially

equivalent to that of granite. This, he stated, is of importance
to those who model the geometry of greenstone belts by
assuming density inversions caused by relatively heavy mafic
units overlyinglighter granitoids. De Wit explained that his model
of thrusting of mafic units on top of a terrane undergoing active
granitoid intrusion could be accommodated either by (a) low-
anglesubduction, as proposed by D. Abbott, or (b) interoceanic
thrusting, producing tonalitic melts at deeper levels by tectonic
stacking, as proposed by V. R. McGregor. Such thrust stacks
could produce a stable granite-greenstone terrane that could
.... *_: .... A^.,..t.l-,._,_+;_,.,, _nrl ¢1*l-v411rti_n _lnn_ itg maroins._UOtatl| _tt|_t_t Lilt _OLIJa_ _.._ _ ......................

Regardingthesizeand thicknessofArcheancratons(question

(18)),de Wit showed fivecrustalcross-sectionsfrom the

Kaapvaalcraton,whichdemonstratedthatArcheancontinents

contained30--40-kin-thickcrustoverlainby sedimentarybasins

(ofvarioustectonicty_, includingriftand collisionrelated).

The presenceofold (ca3.2Ga) diamonds inlaterkimberlite

pipesimpliesthatthesecontinentswere alsounderlainbythick

(150-200kin)lithospherickeels.Itisuncertainwhethersuch

thicklithosphereischaracteristicofallArchean continental

nucleii,or are more locally preserved features such as can be
inferred below the Kaapvaal craton (questions (18) and (15)).
De Wit showed a map of Gondwana, illustrating that, if surface
exposures of Archean rocks are assumed to be continuous

below younger cover, about 80% of the present continents are
pre-2.5 Ga. This, combined with the knowledge of minimal
cratonic crustal thicknesses, would favor an Armstrong-type

continental growth model, which purports that most of the
Earth's present continental mass was extant by 2.5 Ga. Large,
early continental masses, combined with the higher expected
Archean heat production, leads to the question (also (18)) of
the distribution of continental material about the globe.
Possibilities include numerous small plates with continental

"riders," or a more efficient (higher periodicity) or dispersal
of single supercontinents into smaller plates and microplates
as seen during the break up of Pangea in the Phanerozoic
era. These matters relate to the general question of the

temperature of the upper mantle as a function of time (question
(15)). De Wit ended his presentation by pointing out a crucial
problem in greenstone belt geology: interpretation of field
observations(question (5)). He illustrated this by showing slides
of well-developed turbidites with Bouma sequences from
Barberton. These have been interpreted in opposite ways by
experienced American and British sedimentologists, one
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favoring shallow-waterdeposition, and the other a deep-water
environment. Clearly, errors of interpretation made at this level
can only lead to houses of cards.

The first session on rock components, sources, provenance,
and structure of greenstone belts started with two invited
keynote talks. Both overviews emphasized the complexities of
greenstone belts attributable to frequent structural repetitions
by various types of faults and folding. In the first paper, D.
R. Lowe and G. R. Byerly focused on the difficulties facing
field geologists in interpreting their observations; they argued

that many of the current controversies of greenstone belt
petrogenesis, sedimentology, tectonics, and evolution arise from

an inability to develop a clear stratigraphy in the belts. They
illustrated this using the following four types of field analysis
that they believe are frequently the cause of misinterpretations,
and to which stratigraphic analysis in the early Precambrian
greenstone belts is particularly prone: (a) determination of facing
directions; (b) correlation of lithologic units; (c) identification
of primary lithologies; (d) identification of structural contacts.

The absence of fossils has of course long frustrated many
attempts to apply classical stratigraphy in greenstone belts;
Lowe and Byerly point out that the recent "precise" zircon
dating in the Canadian shield will do little to alleviate this.

Another important development for greenstone belt strati-
graphers is the growing awareness that metasomatic alteration

of primary lithologies has, in the past, led to erroneous
litbostratigraphic interpretations. Lowe and Byerly pointed to
several recent studies that have shown that igneous litho]ogies
of silicic to andesitic compositions are in fact si]icified mafic-
ultramafic rocks, and therefore that some of the classic

ultramafic-felsic volcanic cycles reported from, for example, the
Barberton greenstone belt, may not be real. The silicified
lithologies reflect complicated and little understood metasomatic
processes operativeon regional scales.Lowe and Byerly pleaded
for new studies that should focus on providing unambiguous
criteria to distinguish different stages of alteration and identify
their respective environments. Similarly, they emphasized the
need for clearer documentation of features indicating structural
discontinuities in greenstone belt successions: Until such time
that this is done, they feel that the possibility that there are
thick stratigraphic sequences in greenstone belts should be
retained as a working hypothesis.

In contrast, J. R.Vearncombe et aL, in the second overview
paper, point out that the geophysical evidence from a number

of belts suggests that they are shallow (rarely greater than 10
kin, and usually lessthan 5 kin); these are figures considerably
less than quoted for the proposed stratigraphic thicknesses of
these belts (between 17-4,5 km as reported from many
greenstone belts). This shallow depth suggests to them no simple
rotation of the usually upright greenstone belts but, instead,
a structural truncation that may be a major decollement zone.
They believe this is in accord with the observed greenschist
metamorphic facies of the thick successions, which do not
display higher grades of metamorphism that would be expected
at the base of such thick sequences. Vearncombe suggests
this can be explained by involving structural repetitions above
a fiat, shallow decollement in an imbricate stack with associated
folding.

Contrasts and comparisons among various globally
distributed greenstone belts and between the igneous

components of greenstone belts and Phanerozoic ophiolites
were presented in both review talks. Vearncombe emphasized
that abundant spinifex-bearing units are restricted to the

Archean greenstone successions. Contrary to popular belief,
these textures (which indicate rapid crystal growth) form not
only in lava flows but also in shallow-level intrusions. They

suggest the term "cooling units" be used for spinifex-bearing
units and urge identification of new criteria that might permit
the environment of their emplacement to be determined more
precisely. Major differences in lithological content and
proportions among greenstone belts were noted. Lowe and

Byerly suggested that a possible implication of the variability
among greenstone belts is that they may represent tectonic
settings as varied as those represented in modern orogenic
belts. Vearncombe noted that various tectonic settings may
be represented within individual greenstone belts (e.g.,
Barberton); he and colleagues believe that this is due either
to: (I) progressive evolution of tectonic environments; (2) the
superposition of different tectonic environments; or (3) parts
or all of the belts being allochthonous, with representatives of
tectonically juxtaposed environments. Vearncombe also
stressed that there is a paucity of detailed structural observations
to show that greenstone belts are synforms, as historically
assumed, and furthermore pointed out that the role of granitic
diapirism in controlling the structure of greenstone belt
successions may have been over-emphasized. There was
disagreement between the two talks as to whether or not the
older greenstone belts (> 3.0 Ga) are substantiately different

from the younger greenstone belts. Lowe and Byerly
emphasized a difference. They stated that volcanic sequences
in the older belts accumulated under the shallow water

conditions of anorogenic platforms, whereas they emphasized
that those in the younger belts formed in tectonically active
settings. Vearncombe expressed that the idea of such a
distinction is tenuous, at least for greenstone belts of the
Kaapvaal craton.

At the start of the general discussion D. Lowe clarified his

conception of early Archean platform conditions. He
emphasized that these platforms are simatic and stable. Only
at later stages did tectonism influence sedimentation and further

mafic-ultramafic volcanism. Lowe emphasized that quartzites
in these greenstone belts are not diagnostic of that early
platformal stage, but that they represent some other type of
tectonic platform. Both P. Hoffman and K. Burke commented

on the extreme complexity of the geology as described in the
overview talks, and wondered if too bleak a picture was being

painted regarding the prospects of resolving the tectonic history
of greenstone belts. Lowe replied that he had not intended
to convey a depressing message. He re-emphasized that with
further detailed field work many of the controversies could be
resolved. M. Bickle pointed out that the silicification and other
alterations of rocks reported even in the Barberton greenstone
belt were also very marked in the (similar age) greenstone belts
of Pilbara, Australia. He then asked if people agree that such
alterations were less prevalent in the younger greenstone belts.
P. Hoffman replied that the extent of alterations did not show
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secular change. He pointed out that in parts of many of the

younger Canadian greenstone belts there is extensive alteration.
Hoffman felt that Canadian geologists were better equipped
to understand the alteration systems because they have
succeeded in finding the Cu and Au deposits that were part
of these systems. Bickle commented that intense alteration due

to tropical weathering in Africa and the Pilbara had obscured
the earlier alterations and thus added an additional degree of

complexity in these belts. De Wit suggestedthat like deformation
processes, alteration processes take place in various tectonic
environments. He pointed out that the alterations documented
in the Canadian greenstone belts may have occurred in a totally
different tectonic setting from those of Barberton, and that the

various styles of metasomatism and associated mineralization
may provide valuable insights to their tectonic settings.

Chairman L. Ashwal focused the discussion on the field
observations. He asked what could be done about the fact

that different field geologists interpret the same features in the
same rocks in different ways. He cited "way-up structures"
and "sheeted dikes as opposed to lava flows" as examples.

G. Harper responded by asking de Wit about the volume of
the sheeted dikes in Barberton (shown during his introductory

talk and his poster presentation) relative to the total mafic-
ultramafic rocks. De Wit replied that this was difficult to judge.
The main obstacle was a lack of sufficiently good outcrop of

f_q.JIIL_q.,L IL_AC_LII_-DL_IU_ U*._ q.JLaOt.aAJ_t,_,=ai _a,x_ ._.a. u_.._ ....

suggested that up to 80% of the Komati Formation might he
intrusive. E. l_sbet reiterated that this interpretation hinges

on sparse outcrop and he wondered if the intrusives could
not have been horizontal in a lava flow setting. De Wit agreed

that he could not be completely sure whether the intrusives
represented sheeted sills or sheeted dikes, but he continued
by sayingthat other circumstantial evidence led him to believe
that they were vertical intrusions. G. Harper stated that from
his field experience with Phanerozoic ophiolites, sheeted dikes
are not always perpendicular to the bedding of the overlying
sediments. Although an orthogonal relationship is commonly
assumed, very few detailed studies in ophiolites have actually
related the orientation of sheeted dikes to overlyingsediments.

Neither in the Josephine nor Troodos ophiolites (as recently
shown by E. Moores) are these two rock sequences disposed
at right angles to each other. Harper believes that the reason
for this is that ophiolitesform in extensional (tectonically active)
environments where characteristically large scale rotations of-

up to 30o-50 ° occur. In these environments the dikes may
be intruded vertica_ but are subsequently broken up and

rotated by listric normal faults. The sheeted dikes may thus
end up with orientations of up to 50° to bedding in the sediments.
Harper further suggested that such angular relationships may
be further rotated into parallelism during subsequent
compressional deformations. What bothered Harper more
about the sheeted dikes described from Barberton is that they
contained chert xenoliths. He asked how that might be

explained. De Wit suggested that they may have been
incorporated as a result of polyphase extension in different
directions during the emplacement of the vertical intrusions,
for which there was clear field evidence.

A. Wdson reiterated the problem of field identifications in
greenstone belts, with respect to intrusive rocks within volcanic

sequences.He stated that in Barberton, for example, one must
be extremely careful about identifying what the igneous rock
units were. The Kromberg Formation, for example, is a
sequence of units that has been mapped and documented over
and over again as a volcanic sequence. Yet in the lower parts
of thetype sectionone can observe a thick serpentinized dunite,
then a harzburgite overlain by a gabbro; the textures show
unequivocally that these rocks are cumulates, with layering at
high angle to the overall stratigraphy.

L. Ashwal steered the discussion to other field-related

observations by asking about the criteria used to distinguish
thrust faults. De Wit replied that his group had initially relied
on the use of opposing facing directions across iithoiogic
contacts. In such cases they infer the presence of faults, whether
penetrative deformation fabrics are present or not. He also
emphasized that the facing directions determined by his group
do not always agree with those determined by D. Lowe in the
same area. De Wit explained that other observations also
indicate substantial thrust faults. Some of the field data (such

as tectonic truncations, rotated unconformities, etc.) could be
seen displayed on the posters of S. Lamb and I. Paris. In many
places in the study area in the southern parts of the Barberton
greenstone belt, Onverwacht-like rocks had been documented
to be structurally overlying sediments of the youngest Moodies
Group rocks. There are thus clear examples of older rocks
I,llnn r_nt_n nf l,n, lnaor rr_kR_ M_Bickle inauired how the older
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rocks were dated, and because the answer was by Sm/Nd
systematic.s,he suggestedthat these dates might be unreliable.
However, 39Ar/4°Ar stepwise heating experiments have
confirmed the Sm/Nd ages. F. Schwerdtner pointed out that
facing directions do not generally change across thrust zones,
unless they are associated with large recumbent folds. He
suggested,therefore, that many thrusts may not yet have been
picked up in the Barberton. De Wit explained that the reason
for starting with an approach of looking for opposing facing
directions (and recumbent fold nappes) was to convince
themselves that aUochthonous units existed within the
Barberton stratigraphy. Their philosophywas tO prove thisfirst
sincethis assured the presence of thrusts, which are otherwise
difficultto prove usingonly lithostratigraphy. Lowe commented

thathe disagreed with almost everythingde Wit had documented
about the facing directions in Barberton. He had ]ooked at
the same rocks, but he emphasized that these local
controversies could not he resolved at this meeting. Lowe

explained, however, that there was no doubt that there were
thrust faults in the Barberton terrane. The basic area of

disagreement,however, was in which parts of the stratigraphy
these thrusts occurred. Whereas there appeared to be no

ambiguities about thrusts in the upper parts of the stratigraphy,
he believed (unlike de Wit) that there was no evidence for
structural repetitions in the lower parts of the Barberton
stratigraphy. P. Wyl]ie asked if de Wit and Lowe had looked
together at the same outcrops. The answer was no, and
Chairman Ashwal wondered aloud if this might be possible to

organize at all, and if so, should they shoot the one that was
wrong? W. R. Mueh]berger observed that since they would
probably still disagree while examining the same outcrop
together, they should both be shot.The discussion wisely moved
to another, as yet, less controversial topic: are komatiites part
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of (Archean) oceanic crust? M. Bickle.was dubious to accept
this for two reasons. First, the rocks were so tectonized it

would be difficult to prove. Second, isotopic data from komatiites
such as Kambalda (Yilgarn, Australia), which are also part of
a tectonized mafic-ultramafic succession, indicate contamination
by sialic crust. These komatiites contain xenocrystic zircons
that are about 700 Ma older than their hosts. How could one

account for this? It seems that the komatiites must have erupted
through older continental crust. De Wit replied that oceans
start as rifts, so that early komatiites could conceivably have
traversed stretched continental crust, while later komatiites
could have formed at mid-oceanic ridges. M. Bickle accepted
this possibility, but stressed that geochemical and other tools
to identify oceanic crust are complicated, and that we must
be sure that the data is correctly interpreted before we use
it in models. J. Ludden questioned whether the volume of
komatiites in greenstone belts may not be overstated. He
pointed out that they are only a minor constituent in the
Canadian shield and that they are absent in several greenstone
belts. The discussion then moved to the question of the densities
of greenstone belts. M. Bickle commented that most rocks
in the Barberton are mafic and have densitites of 2.9-3.0 gin/
cm 3, and K. Card stated that the Canadian greenstone belts
had average densities between 2.85-2.9 gm/cm 3. De Wit replied
that unlike the Canadian greenstone belts, he estimated that
25% of the igneous rocks in Barberton were ultramafic rocks,
and since these were almost entirely serpentinizated, these rocks
lowered the overall density of the Barberton greenstone belt
to the granitoid-like values that he had calculated. J. Ludden
cautioned, however, that the serpentinization might be a late
alteration, in which case the low-density calculations had no
relevance to understanding early tectonic processes. De Wit
replied that the alteration of the Barberton komatiites almost

certainly occurred early in the history of the development
greenstone belt (as indicated by old 39Ar/4°Ar and K-Ar ages)
and that this had probably occurred during hydrothermal
alteration at spreading ridges where the komatiites were
emplaced. E. Nisbet commented that stable isotope measure-
ments from most of the greenstone belts, and in particular those
from Southern Africa, indicate that there was both early

serpentinization, which was hydrothermal, and late alterations,
which were recent. He cautioned de Wit to be very careful
with his density estimates. De Wit accepted that. K. Card asked
de Wit if he had measured actual densities of the Barberton

rocks. De Wit replied no, and explained that the density values
chosen for his "back-of-the-envelope" calculations were taken
from standard densities given for serpentinites.

K. Burke moved the workshop to a totally new topic. He
asked what significance should be attached to the fact that

there are different proportions of different rock types in different
greenstone belts. He went on to answer his own question and
suggested that Archean students might do well to look closer
at younger mountain belts, where one finds tremendous

variations in rock types along strike. He focused on the example
of the ophiolite distribution in the Appalachians: Such complexes
occur in abundance in the northern parts of this mountain belt,
but were almost absent in the central and southern parts. Burke
also emphasized that different tectonic regimes are preserved
in younger belts. Thus, because of the fact that in the greenstone

belts there is such tremendous diversity, Burke wondered if
one should worry about it too much; comparative studies of
greenstone belts and younger orogenic belts might be a fruitful
approach. After all, Burke continued, greenstone belts are
entirely confined to continental crust today. However, they
contain thousands of km 3 of tholeiitic pillow lavas, which must
be oceanic representatives, and therefore mark places where
oceans opened and closed. By analogy to modem belts, we
would expect tremendous diversity in what little is preserved
in greenstone belts. Burke was therefore unhappy about
statements that the old greenstone belts are significantly
different from the younger greenstone belts, given that the total
area of greenstone belt preserved in proportion to the total
area of continents is so small. Burke believes rock preservation
is subject to the lottery of extreme tectonism and erosion.

Following the much needed coffee break, McGill and Shrady
presented a preliminary structural model for the southwestern
part of the Michipicoten greenstone belt, Ontario. Based on
their detailed mapping, they have been able to show that this
part of the belt is a tectonic complex, consisting of several

lithologic packages of clastic sediments bound by early faults.
In some cases, the stratigraphic way-up reverses across these

faults. On a large scale the boundary faults parallel lithologic
layering; on the outcrop scale they commonly cut across the
stratigraphy. Only locally do they preserve evidence of
penetrative strains. McGill and Shrady demonstrated that the
belt contained large recumbent folds, facing in opposing
directions, that had developed synchronous with and/or were
overprinted by the major faults. They concluded that the
simplest explanation for these structural relationships would
be a rotated imbricate thrust belt. In the following talk, Hudleston
and coworkers presented structural data to show that

transcurrent (wrench) faulting in an overall compressive stress
regime (transpression) was the cause of the main structural

features in the greenstone belt of the Vermilion district, NE
Minnesota. Previous work assumed that the deformational

features of the belt resulted from pure compression, related
to diapiric intrusions of batholithic granitoids to the north and
south. Hudleston et al. demonstrated, however, that the
Vermilion fault was the latest, most brittle expression of a long-
term regional dextral shear regime. They concluded that the
Vermilion district was a region of relatively soft lithosphere,
deformed between two more rigid blocks (either thicker or
cooler) to the north and south.

Wrench faulting was also the subject of the next talk by
C. Hubert and J. N. Ludden. They presented a tectonic
interpretation of the structural elements of the Abitibi
greenstone belt (Ontario and Quebec). Hubert and Ludden

showed that this belt consists of large-scale lozenge-shaped
blocks each with different lithologies and structural-
metamorphic histories, separated by faults and zones of ductile

deformation. Sedimentary accumulations occur along the
margins of the blocks in a series of long, narrow basins bound
by the shear zones. Most of the blocks contain an older (2850-
2720 Ma) calc-alkaline volcanic-plutonic basement, overprinted
by tholeiitic volcanism at about 2700 Ma. Hubert and Ludden
propose that the southern Abititi belt formed in a series of

rift basins that dissected an earlier formed volcanic arc (analogies
were made with Japan, New Zealand, Indonesia, and Central



America), and subsequently were accreted obliquely against
a more stable continental margin to the north.

During discussion, R. Fripp asked whether the folds and
shears discussed by McGill and Shrady were related, or whether
the folds totally predated the shearing. Shrady thought that
the shears might have formed during the folding. M. de Wit
pointed out that they should then use the term slide for such
a shear; he also asked what they knew about the tectonic
transport directions. McGill replied that he had reservations
about the term slide since it conveyed to him a geomorphic
term; they had no idea about the transport directions.

M. de Wit commented that in essence the last two talks

described large scale continental melange zones of horrendous
structural complexities, and he asked how the authors proposed
to set about restoring these features so that one might
understand the originalbasin geometries. Hudleston replied that
ff there was sufficient outcrop they could measure continuous
strain sections and remove these visible effects of shear. He

explained that this would have to he tied into the stratigraphic

columns. The major zones of structural discontinuities would,
however, he very hard to deal with because they were poorly
exposed and many may well he missed. K. Burke suspected

that this might be a thankless and impossible task, he suggested
that they should rather ask questions they could answer more

satisfactorily.Trying to correlate stratigraphyamong the various
o=ocKs in the ooumern _omol....... would be cumcult...... indeed. He

therefore proposed that they abandon such an exercise (for
the moment) and first study more carefully the boundaries
between the tectonic blocks, where they are exposed (such
as the Larder Lake fault zone). Burke felt that there was a
need to learn a lot more about these shear zones; moreover
they contain lots of gold and were thus likely to be profitable
targets for other reasons also.

E Schwerdtner told the audience that he had been asked

to talk a little bit about the work of G. Stott, who had been
mapping in an area just north of that described by Hudleston.
The two areas display virtually the same structural styles and
histories, but Stott had the advantage of being able to integrate
his structural data with detailed geochronology. Stott has
devised a scheme in which an originally (D1) foliated terrane
was subsequently subjected to the transpressional strain (!_).
He had also been able to show that some rocks were laid

down after the first period of deformation and only experienced

the transpressional strains, while other rocks were even younger
and undeformed. K. Burke asked what the sort of time frame

was for the transpressional strains. F. Corfu, who has worked
closely with Stott on these structures, explained the detailed
geochronology of the area. In particular he pointed out that
a series of deformed voicanics and a deformed pluton were
dated at 2689 Ma and 2690 Ma, respectively. In contrast a
post-D2 pluton had been dated at 2684 Ma, so that (given
uncertainties) the maximum duration of the transpressional
event (1_) was 10m.y.

P. Hoffman asked Hudleston whether in his area the

transpression was the only deformation or whether it was also
superimposed on an earlier event. Hudieston replied that the
transpression had been superimposed on a D1 event that
produced neither a metamorphic pattern nor a recognizable
strain pattern. He assumed therefore that the D1 structures
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were soft sedimentary structures. Thus, there was no evidence
for significant tectonic events prior to transpression. He noted
that this was a difference between his area and that of Stott's,
and asked therefore what the nature of D1 was in Stott's area.
Schwerdtner replied that he did not know, nor could he answer

Hudleston's further question as to whether the pre-l_ foliation
in $tott's area had an originalsteepor subhorizontal orientation.
Some inaudible comments followed until P. Hoffman could be

heard to ask if a lot of the granitoid plutons had intruded during
transpression. R. Bauer replied indecisively, and P. Hoffman
commented that one tectonic setting where granitoid plutons
could occur in a zone of transpression was in an arc that had

developed over an obliquely subductingslab.M. Jones brought
the discussion back to the fundamentals of kinematics. He asked

if Hudleston and his coworkers had attempted to use structures
such as fibrous extension veins to understand the incremental
strain within the shear zones. Hudleston's reply was negative.
P. Hoffman questioned the soft sedimentary explanation for
D1 in Hudleston's area, since he had described giant D1 folds.
Hudleston agreed that this was indeed an enigma that he still
did not understand.

As a final remark, P. Morgan commented that Hudleston
had said that the localization of the transpression had occurred
in hotter or thinner crust. Morgan pointed out, however, that
as a consequence of the greater strength of olivine compared

with thick crust. Consequently, the transpression zone was
localized in hotter or thicker crust. Hudieston agreed and said
that all they know is that it was a weaker zone, and they should
have referred to lithosphere rather than crust; he said they
would revise their abstract.

In the following talk D. R. Lowe and G. R. Byerly discussed
the sedimentology and stratigraphy of the southern Barberton
belt, South Africa in terms of changing provenance and stability.
They have identified three evolutionary stages: (i) A volcanic
platform stage during which at least 8 km of volcanics and
thin sediments of the Onverwacht group accumulated. The
sedimentary units are predominantly shallow-water with little,
if any, contribution from uplift and erosion of older basement.
These features and the regional stratigraphic continuity are
interpreted in terms of a broad, low-relief, anorogenic setting.
(2) A transitional stage of developing instability during which
distal volcaniclastics and carbonaceous cherts of the Fig Tree

Group were deposited. (3) An orogenic stage that involved
cessation of active volcanism, extensive thrust faulting, and
widespread deposition of clastic sediments of the Moodies
Group. The overall sequence includes many local unconfor-

mities, and at least one major break between the Fig Tree and
Moodies Groups. This break is interpreted as an unconformity
complicated by later structural movement.

A companion paper by Byerly and Lowe dealt with Barberton

volcanism. In their area they estimate a minimum thickness
of 12 km for mafic and ultramaflc rocks of the Onverwacht
Group, and 1 km of volcaniclastic sediments of the Fig Tree
Group. Structural repetitions in the Fig Tree Group resulted
in a greater tectonic thickness. Some units, previously

interpreted as polycyclic volcani c Successions,appear to contain
thick alteration zones where mafic flows have been subaerially

silicified. Komatiites are mainly spinifex-textured flows, with
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evidence for crystal accumulation near their bases. Basalts
include pillowed and tuffaceous units as well as sills and dikes,
and may represent near-vent facies similar to modern cinder

cone fields. Dacitic volcanics commonly include tuffaceous units
and thick flows, pyroclastics and epiclastics, some of which

can be interpreted as vent complexes. The komatiites and
basalts could be related by low-pressure olivine fractionation,

but there are insufficient cumulates present in situ to account
for this. Dacites are consistent with having been derived by
small degrees of partial melting of a mafic, amphibole-rich source.

In discussion, J. E. Martyn asked Byerly if the K and Rb
enrichments observed in his proposed alteration of basalt to
silicic rocks might be better interpreted as having taken place

subaqueously, for example, by hydrothermal alteration rather
than by subaefial weathering. Byerly responded that the
alteration certainly could be hydrotherrnal, considering the

evidence for extensive igneous activity, but in this case the
occurrence of these altered rocks as large regional stratiform
zones would require an unusual flat-lying style of water
circulation. Such models have been proposed by de Wit for
Barberton and by others for Pilbara rocks. Byerly also pointed
out that K-enrichment of basalt can occur on the ocean floor

of 5-10 Ma, without the high temperatures, associated with
hydrotherrnal activity. Byerly explained that their evidence for
subaerial weathering comes from associated sedimentary rocks.

M. de Wit commented extensively on both [-owe and Byerly's

talks. He stated that he was in agreement with many of I.owe
and Byerly's points, specifically with regard to the dacites and
the silicification of the mafic and ultramafic rocks. He had in

fact proposed in the early 1980s that many of the dacites might
have been differentiates of the mafic rocks, but this is clearly
not the case. However, he strongly disagrees with Lowe and
Byerly's interpretation of the total stratigraphy of the Barberton
rocks. De Wit explained that he and his colleagues approach
the Barberton belt in terms of a much more complicated history,
involving thrust nappes and major allochthonous relationships,
and therefore have largely abandoned the previously established
stratigraphy. He feels that some of the features interpreted as
weathering zones by Lowe and Byerly are tectonic shear zones
developed very early during the igneous history of the
Onverwacht Group. He showed a slide of one of these shear
zones that consists almost entirely of extension veins separated
by mylonites and schistose material, which is often fuchsitic.
A second slide showed the polyphase tectonic history of these
shear zones with folding of the extension veins. He offered
participants an opportunity to examine these samples at his
poster display. He also illustrated, with slides of maps from

the Komati and Kromberg type sections, his point that some
of the rocks interpreted by others as conformable extrusives
are actually intrusives, crosscutting earlier units. These include
spinifex-textured komatiitic rocks as well as dacites that he
interprets as intrusive domes. Some of the shear zones he
described are actually caught up as megaxenoliths in the mafic-

ultramafic intrusive rocks, arguing for an early active
(extensional) tectonic environment rather than a simple
plat'formal style of deposition for the Barberton rocks. He

explained that there is still major uncertainty as to whether
this took place ina shallow water environment similar to Iceland,
or in a deeper water, mid-oceanic ridge-type setting. He showed

several maps illustrating the numerous major thrust zones he
and colleagues have identified, and stated that although they
are uncertain as to exactly how to restore these units
stratigraphically, the total thickness of the mafic-ultrarnafic rocks
cannot be much greater than about 3 kin, according to their
interpretation.

In response, Lowe explained that the final stratigraphy he
and his colleagues adopted was based on careful consideration
of earlier interpretations, such as those of Anhaeusser and the

Viljoen's, which involve large-scale continuity, as well as de Wit's,
which involves abundant fault-related disruptions. He agreed
that the fibrous veinlets de Wit showed formed under vertical

tensional stress, but stated that the origin of that stress is very
ambiguous. It does not necessarily imply any slip along those
zones. Similar veinlets can be found in purely sedimentary

environments, such as in gypsum or satin spar horizons or
in ice crystallized in permafrost zones. Regarding continuity
of mafic-ultramafic flow units, Lowe admitted that not every
flow is traceable over large distances. Individual flows are often

lenticular, and there are other complex facies changes.
Accordingly, they have attempted to recognize groups of

volcanics, tens to hundreds of meters thick, that are traceable
over larger distances. Examples include ultramafic zones and
pillowed tholeiitic sequences in the Hooggenoeg Formation.
Lowe also agrees that intrusive komatiites are abundant, but
this says nothing about the presence or absence of extrusive
komatiites. He pointed out that it would be staggering to have
hundreds of meters of extrusives in the Fig Tree and none
in the Onverwacht. His evidence for abundant extrusive

komatiites in the Fig Tree includes the presence of fragments
of komatiite and detrital Cr-spinel in the bases Of overlying
chert units. There are also cracks and hrecciated zones filled

with sedimentary material penetrating from cherty units into
underlying komatiites. Therefore, although there is good
evidence for both extrusive and intrusive komatiitic rocks, the
relative abundances are uncertain. Finally, Lowe agreed that
a fault clearly exists in the felsic volcanics of the Hooggenoeg
Formation, but commented that it is possible in many places
to trace stratigraphic markers across it, including komatiites,
and a newly recognizable evaporitic unit.

Discussion continued with comments by R. A. Hart who
apologizedfor being a geochemist; he was convinced early by
his brother Stan that geochemistry would soon render field
geology obsolete. Hart showed slides documenting that K-Ar
ages demonstrate that the last metamorphism of Barberton

rocks, including serpentinization and Si-metasomatism, took
place 3.3 Ga ago. Oxygen isotope data on ultramafic tectonites
indicate that they formed in contact with fluids similar to sea
water, favoring a submarine rather than a subaerial site for
alteration. Similarly, Barberton cherts have relatively low 180

compared to biogenic cherts formed on the present-day ocean
floor, suggesting that they are also hydrothermal in origin. Hart
favors an ocean-ridge environment for the hydrothermal activity,
which is consistent with the ophiolite model for this terrane.

J. N. Ludden asked Hart why there are no comparable massive
sulfide deposits in Barberton as in the Abitibi belt of Ontario,
if the hydrothermal circulation model is correct. De Wit
responded that Barberton contains abundant Au mineralization,
and that the apparent absence of Pb-Zn deposits may be an
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indicationofdifferencesin tectonicstylesbetweenBarberton
and Canadian greenstone belts, for example, mid-oceanic ridges
rather than island arcs. R. E. P. Fripp commented that his
detailed mapping in the Theespruit area of Barberton shows
at least seven major tectonic zones, and he also commented
on the possibility of multiple tectonic breaks in the Komati
Formation and cast his vote for 3 km rather than 8-12 km

of stratigraphic thickness of the Onverwacht sequence. P. E
Hoffman asked whether the extension faults that were
mentioned could be related to caldera collapse. Byerly

responded that there is no evidence for that. The faults are
developed on top of feisic volcanic edifices, but there are no
associations that indicate eruptive activity post-dating faulting.

Chairman Lew Ashwal adjourned the controversial morning
session with regret that discussion must come to an end.

The afternoon session opened with two talks drawing
analogies between Archean greenstone successions and
Phanerozoic ophiolites. G. D. Harper described a (2.7 Ga?)
sequence of "ophiolitic" rocks, including pillow lavas,
metadiabases, metagabbros, and ultramafics from the
southeastern Wind River Mountains, Wyoming. The rock

assemblage has been multiply deformed and metamorphosed,
and consists of a series of tectonic "slices." Numerous primary

textures have been preserved, including metadiabases
containing parallel dikes with one-way chilling features,
interpreted as a deformed sheeted dike complex. Uitramafic
rocks (serpentinites) and associated metagabbros have relict
cumulus textures. Associated sedimentary rocks include pelites,
quartzites, and banded iron formations. Immobile trace dements
are similar in pillow lavas and metadiabases, suggesting that
they are cogenetic. All the units of a complete ophiolite are
present except for mantle peridotites.

H. Helmstaedt and W. A. Padgharn described an approx-
imately 11-km-thick sequence of dominantly mafic metaigneous
rocks from the Yellowknife greenstone belt in the Slave Province
of the Canadian Shield. The mafic rocks grade upwards from
coarse-grained locally layered gabbro, through a multiple dike
complex, into massive and pillowed flows with interflow
sediments. This assemblage was compared to Mesozoic
ophiolites like the Rocas Verdes of southern Chile, interpreted
to have formed in an arc-related marginal basin setting.

In discussion, J. N. Ludden pointed out the similarity of this
Yellowknife section to those of modern oceanic islands like

the Canary Islands. M. Bickle questioned how far down in the
sections the sedimentary horizons appear. He]mstaedt

responded that cherts first appear 5 km above the base of
the sectionat Yellowknlfe, and although iron formations appear
at the very bottom, it is unclear if these are in stratigraphic

continuity with overlying gabbros or if there is an intervening
structural break. W. S. F.Kidd wondered if anyone would object

to calling this sequence an ophiolite if there was a basal thrust
zone. E. G. Nisbet felt that we must he extremdy careful in

interpreting these fragmented units as representing ophio]ites,
pointing out that nearly all Archean basaltic rocks would plot
in the ocean-floor field on a Pearce-Cann geochemical

discrimination diagram. Harper assured us that he has been
careful in the Wind River section, and that his combination
of detailed structural and geochemical studies are at least
consistent with an ophioliticinterpretation. He emphasized that
if this was a terrane in the Appalachians or Cordillera, no one

would object to calling it an ophiolite. Harper also pointed out
that identification of the precise sites of origin of these Archean
sequences is less important, at present, than recognizing their
possible similarities with Phanerozoic ophiolites. Hdmstaedt
stressed the recurring semantic problem with placing too much
emphasis on the definitions of "ophiolites" and "greenstone
belts." Harper reminded us of the entrenched dogma that
equates all Phanerozoic ophiolites to ocean floor; some, such
as Troodos, are reliably interpreted as having arc affinities. To
equate with confidence any given potential ophiolite sequence
to an ocean floor environment requires identification of
ultramafic tectonites; these have been looked for but not found
in the Wind River area. R. Hart asked if any serpentinites had

been found, and Harper said that the ultramafics of the Wind
River Mountains have relict cumulate textures, which could

not allow an interpretation as upper mantle peridotites. P. F.
Hoffrnan voiced a concern similar to Nisbet's about interpreting
these sections as oceanic crust formed at specific sites such

as spreading centers, ocean islands, plateaus, or island arcs.
He also wondered how komatiites fit into the picture. Harper

pointed out that not a single Phanerozoic ophiolite (with the
possible exception of Bay of Islands) can he demonstrated to
have formed at a spreading center, d. F. Casey concurred and
stressed that there is little agreement even in Phanerozoic

ophiolites as to their sites of formation. Bickle mentioned that
he was struck by the relative absence in the_e ^ -'----
occurrences of gabbros, especially ones cut by dikes, leading
to his interpretation of their formation on continental crust.
Harper stated that in the Wind Rivers, only the coarse-grained
lineated gabbros in the upper parts of the section are crosscut
by dikes; they are absent from the cumulate-textured gabbros
associated with ultramafics. A similar relationship is observed
in Phanerozoic ophiolites. Ludden commented that the
characteristic weathering profiles and associated sedimentary
rocks expected from such ophiolitic assemblages should be
easily identified. Harper pointed to the presence of banded iron

formations, and Helmsteadt reiterated the presence of
sediments at Yellowknife, where there is also extensive alteration

in places. The alteration in the Yellowknlfe belt; however, may
be much younger, possibly associated with the emplacement

of quartz porphry dikes. Casey pointed out two differences
between Phanerozoic ophiolites and the Archean sequences
described here: the presence (in Phanerozoic examples) of
ultramafic tectonites, and the absence of interstratified
sedimentary horizons within pillowed units. Harper responded
that interstratified sediments were absent from Wind River pillow

lavas, and Helmstaedt reminded us that sediments were absent
from the first 5 km of the Yellowknife volcanic-intrusive section.
The absence of ultramafic tectonites was attributed by

Helmstaedt to tectonism. M. de Wit emphasized D. Elthon's
work on an ophiolite in the southern Chilean Andes, which,
although it lacks ultramafics, is still comfortably referred to by
most as an ophiolite. De Wit stressed that the important thing
isto recognize the Archean sequences as "ophiolitic" regardless
ofwhether or not an ocean floor setting can he demonstrated.
Elthon commented that the southern Chile example may lack
ultramafics simply because it has not been sufficientlyuplifted.

This discussion was followed by two geochemical papers on
the Michipicoten greenstone belt and adjacent terranes of
northwestern Ontario (Superior Province). E. Smith, M.
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Tatsumoto, and R. M. Farquhar presented the results of their

combined U-Th-Pb and Lu-Hf isotopic study of zircons from
supracrustal rocks of the Michipicoten belt and gneisses of the
adjacent Kapuskasing granulite zone, which is thought to
represent the underlying basement. The zircons show distinct
patterns in concentrations of Lu, Hf, U, and Th, which can
be correlated with rock type. Granitic zircons are enriched
in U and Th relative to intermediate granitoids, and those from
high-grade mafic gneisses show evidence of Lu, Hf, and Pb
loss, presumably during granulite metamorphism. Hafnium
isotopic ratios of these zircons indicate derivation from three
distinct sources: (I) a high Lu/Hf source, interpreted as depleted
mantle, that gave rise to tholeiites, (2) a moderately enriched
Lu/Hf source, interpreted as lower crust, that produced dacites
and subvolcanic equivalents, and (3) a subchondritic Lu/Hf
source, interpreted as upper crust, that generated rhyolites and
post-tectonic potassic granitoids. The data were interpreted in
terms of a model involving progressively shallowing depths of
melting, and the close correspondence of ages (2748-2714 Ma)
suggests that mantle depletion, crustal extraction, and
intracrustal differentiation occurred as part of the same episodic
event.

In discussion, Ludden ques_oned how the isotopic signature

of their proposed lower crustal source could be distinguished
from mixing between upper crustal and mantle sources. Smith
responded that such a case should be expected to result in
a continuous range of isotopic compositions instead of separate
vectors on a plot of age vs. Hf.

P. J. Sylvester, K. Attoh, and K. J. Schulz interpreted their
geochemical data for rhyolitic rocks from the Michipicoten
greenstone belt in terms of a convergent plate margin model
rather than one involving intracontinental rifting. Michipicoten
rhyolites have high (AI + Ca)/(Fe + Na + K) and a range
of SIC2, more similar to Cenozoic subduction-related rhyolites
than to those found among intracontinental rifts. These authors
drew an analogy between the tectonic settings of the
Michipicoten belt and the Taupo volcanic zone, where
pyroclastic rhyolites derived from the continental crust of New
Zealand are deposited on the adjacent sea floor among tholeiites
from the Tonga-Kermadec island arc. Such an environment

could possibly account for the mafic-to-felsic cycles of the
Michipicoten belt, although the presence there of subaerial and
shallow-water volcanics, volcaniclastics, and sediments
seemingly requires either intermittent emergence of the volcanic
pile, or the presence of small, underlying continental blocks.

J. E. Martyn questioned the analogue between Michipicoten
and Taupo, citing the absence in the Archean example of
extensive epithermal Au and porphry-related mineralization. He
also stated that no thick sequences of tholeiites and komatiites
exist at Taupo, and therefore the basement for the rhyolitic
rocks at Taupo and Michipicoten "was different. Sylvester
responded that Michipicoten may be more analogous to the
terrane adjacent to the Taupo volcanic zone. Ludden pointed
out that the Michipicoten belt can be correlated (across the
Kapuskasing Structural Zone) with the northern (Chibougamou)
part of the Abitibi greenstone belt, but not with the southern
part, where there are abundant mafic and ultramafic rocks.
This terrane may, therefore, consist of a series of accreted

blocks of oceanic affinity. C. H. Shrady commented that

ultramafics are present in the parts of the Michipicoten belt
she has worked in, and that most of Sylvester and colleagues'
geochemical comparisons were carried out for lower cycle
Michipicoten volcanics. Sylvester stated that upper*cycle
rhyolites, produced some 50 Ma later, are quite similar
geochemically. The ultramafics Shrady referred to are evidently
intrusives, not komatiites. W. R. Muehlberger and J. F. Casey
wondered if back-arc or fore-arc accretionary sediments could
be identified at Michipicoten, and Sylvester stated that these
possibilities could not be ruled out. W. S. F. Kidd questioned
the interpretation of cyclic volcanicity in the Michipicoten belt,
citing McGill and Shrady's morning presentation, which
documented evidence for early large-scale detachments. K. J.
Schulz pointed out that there is some geochronology supporting
volcanic cyclicity, but whether this will stand up in detail remains
to be seen.

The session continued with two talks favoring an intracon-
tinental rift environment for certain greenstone belts in the
Superior Province of the Canadian Shield. G. R. Edwards and
D. W. Davis reported U-Pb geochronologic results for volcanic
and plutonic rocks from the western Wabigoon Subprovince,

Ontario. Here the volcanic sequence consists of bimodal Mg-
tholeiite and rhyodacite (2755 Ma), followed by Fe-tholeiite and
rhyodacite accompanied by mafic and tonalite plutons and felsic
calc-alkalic volcanics (2734-2718 Ma), and finally dacite (2711
Ma). This volcanic-plutonic terrane is adjacent to a dominantly
plutonic terrane (2720-2725 Ma) consisting of domes of gneissic

tonalite to granodiorite, and later diorite to granitic plutons.
Some gneisses and supracrustal rocks in the latter terrane have
ages as old as 3.0 Ga. These relationships are interpreted in
terms of rifting of the 3.0 (and older) basement, starting with
mafic magmatism, which evolved to bimodal basalt and
rhyodacite. Tonalite intrusions accompanied the volcanism.

Deformation of the rift sequence and basement complex is
attributed to heating of the lower crust by ponded mafic magma.

The geology, stratigraphy, and geochemistry of the La Grande
greenstone belt of Quebec was discussed in a talk by T. Skulski.
The western part of the belt consists of immature clastic
sediments and mafic volcanoclastics, overlain by pillowed and
massive basalts; in places this sequence continues with coarse
clastic sediments, banded iron formations, and finally andesitic
volanoclastics intercalated with immature clastic sediments. In
the eastern part of the belt, felsic volcanoclastics are overlain
by pillowed basalts, and eventually, komatiites. Skulski and
coworkers suggest that the La Grande belt formed on

continental crust because: (1) the provenance of clastic
sediments changes upward from both intra- and extrabasinal
to uniquely extrabasinal, (2) inclusions of metasediment and
granitoid occur in volcanic rocks, and (3) they have identified
a possible unconformity between supracrustals and older
tonalitic basement. They believe the crust initially acted as a
density filter to produce basaltic fractionates of komatiitic liquids.
Later, the crustal barrier failed, allowing komatiitic magmas to
ascent to the surface. Their model, ostensibly consistent with
the distribution of rock types and paleocurrent directions in
clastic sediments, involves intracontinental rifting, which
propagated from east to west across the belt.

These talks stimulated lively discussion, initially led by K.
Burke, who felt that rifting models for greenstone belts are



inconsistent with the abundant evidence for large-scale
compressional features documented earlier in the workshop.
Skulski stated that he and coauthors have focused on the

features produced during the early extensional phase, and
agreed that the compressional features may have formed during
subsequent ocean closure. Burke accepted this. Edwards,
however, argued that the Wabigoon Subprovince never
developed into a full-scale ocean, and that there was no large-
scale compression associated with closure. He also argued that
the compressional features present may not have formed under
a regional compre_iooal regime, an idea supported by W. M.
Schwerdtner. Burke did not seem convinced.

The final two talks of the afternoon session emphasized
compressional tectonic features of greenstone belts. J. E. Martyn
discussed evidence for structural stacking and repetition of
volcanic-sedimentary units in the Norseman-Wiluna greenstone
belt (Kalgoorlie District), western Australia, which contrasts with
previous models involving polycyclic stratigraphic repetition.
Martyn cites several examples where mafic-ultramafic units,
originally mapped as stratigraphically separate entities, can he
shown to be equivalent when considered in a regional sense.
Detailed examination of contacts commonly reveals evidence
for strong shearing and cataclasis, and in places, reverse facing
directions. Martyn argues that most repetition has been
produced by thrust faulting rather than by isoclinal or recumbent
folding. The iack of evidence/or high-pressure metamorphism
or juxtaposition of strongly contrasting domains suggests that
thrusting occurred on a scale smaller than that of many
Phanerozoic convergent plate boundaries. Martyn favors an
intracratonic setting rather than an open plate margin, with
intrabasinal gravity gliding resulting from vertical uplift. The
instabilities may have been triggered by granitic intrusions. The
illusion of a polycyclic stratigraphy may have been caused by
later folding and faulting.

P. Hoffman presented his tectonic model for the 2.7-2.5 Ga
granite-greenstone terrane of the Slave Province, Northwestern
Canada. The greenstone belts are interpreted as remnants of
tectonically accreted seamounts, arcs, aseismic ridges,
submarine plateaus, and microcontinents. These bathymetric
highs, overlain by chemical sediments and flanked by clastics,
were buried by thick sequences of orogenic turbidites upon

entry into trenches, where they were detached from underlying
oceanic units. The latter were subducted. The accretionary
complexes were later intruded by post-tectonic plutons.
Hoffman believes that this model accounts better for the

sequence of volcanic, sedimentary, deformational, metamor-
phic, and plutonic events than previous theories involving
intracontinental rifting. Hoffman's hypothesis may be tested by
regional Sm-Nd studies of late plutons, which should yield model
ages equivalent to or younger than the volcanic rocks.

K. Burke opened the discussion by asking about events to
the east of Hoffman's area. Hoffrnan explained that the eastern
margin of the Slave Province underwent a Himalayan-type
collision at about 1895 Ma, presently represented by a suture
corresponding to the Thelon Front. Contemporaneously, the
Wopmay orogen on the west side of the Slave Province was

an Andean-type arc, undergoing episodic extension, shortening,
and strike-slip movements. H. Helmstaedt inquired about the
absence of rift-related rocks in the Slave Province, and also
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about the possible locations of obducted sequences. Hoffman
reiterated that no rift sequences are present, and that the

greenstone belts represent sheared-off and accreted high-
standing oceanic features in a setting analagous to modem-
day Japan. Burke attempted to clarify Helmstaedt's question
as to why ocean-floor rocks are absent. Hoffrnan stated that
the presence of the upper parts of ophiolitic sequences cannot
be ruled out in the Slave Province, but he expressed doubt
about such an interpretation for the Yellowknife belt. G. D.
Harper commented about the danger of interpreting geochem-
ical data in terms of tectonic environment. Hoffman stated that

most greenstone belts in the Slave Province are dominantly
composed of andesites, dacites, and high-Al, low-'lq basalts, but
at any rate his tectonic model does not stand or fall on the
basis of geochemistry. W. M. Schwerdtner asked Hoffman to
speculate on how his model would apply to the Superior
Province. Hoffman responded by stating that there are a wide
variety of features on the ocean floor that could get accreted:
oceanic plateaus related to hot spots, fracture zones, etc., so
it is entirely conceivable that greenstone belts differing in
lithology and chemistry could he generated in different areas.
G. R. Edwards commented that if greenstone belts are related
to convergent plate boundaries, the absence of spreading
features could he accounted for by subduction, but translational
features should be preserved. Hoffrnan agreed, and pointed
out that this could be easily accommodated in his model: He
attributed the absence of strike-slip features in the Slave
Province to orthogonal subduction; oblique subduction could
and should preserve translational features. M. Bickle asked

Hoffman how structurally complex the turbidites were in Slave,
and we learned that they were very deformed indeed, d. R.
Veamcombe offered his general impression about the structural
papers presented in this session: that greenstone belts of the
Superior Province are characterized by abundant strike-slip
movements, those of South Africa by thrust faulting, and those
of Western Australia by imbricate stacking. He wondered if
this is a real difference in style rather than one of interpretation.
J. E. Martyn commented that evidence for abundant strike-

slip motion is available in Australian greenstone belts also, and
he doubted if there were differences in styles between different
cratons. D. De Paor recommended that tools used in

Phanerozoic structural geology, such as branch-line mapping
techniques, be applied to Archean terranes. He illustrated his
points with an example from Barberton, where he said mylonites
"stare you in the face." Martyn reiterated that we must consider
an entire province before making conclusions about tectonic
settings of individual greenstone belts. A. K. Gibbs reminded
us not to forget that many greenstone belts are Proterozoic,
including some of those in South America, West Africa,
Southwestern United States, Baltic Shield, Egypt, Saudi Arabia,
and Canada. He also commented that while the accretionary
events were taking place in Hoffman's area, a classical rift
sequence was developing in the Carajas district of Brazil.
Hoffman added that the Proterozoic greenstone belts of
Manitoba were long thought to be Archean. The session was
adjourned by Chairman W. S. E Kidd.

Session II (Greenstone Belt Externalities: Magmas, Heat
Flow, Fluids, and Strain) opened with an invited keynote talk
by M. Bickle and E. G. Nisbet on thermal constraints on
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greenstone belt tectonics, particularly those available from
thermal modeling, The thermal history of the Earth may be

calculated from the present distribution of temperature and

heat-producing elements by deriving relationships between
internal temperature and heat loss. One must also assume that

the Earth was hot after accretion, that the present radiogenic

heat production accounts for about half of the total heat loss,
and that convective heat loss processes varied only in rate

in the past. The main conclusions derived from parameterized
convection models, which treat uncertainties in convection of

fluids with temperature-sensitive, non-Newtonian viscosity, are:

(1) Interior temperatures have not changed by more than a

few hundred degrees over most of Earth's history, and (2) higher

internal temperatures result in thinner plates with higher thermal

gradients. Further constraints must come from the Archean

rock record, which could provide clues to mantle temperatures

and lithospheric thermal gradients. Although the presence of

komatiites in Archean 9reenstone belts has been taken as

evidence supposing hotter Archean upper mantle, there are

major uncertainties as to the MgO content of primary liquids

(and hence eruption temperatures), the degree of melting

involved, and the relationship between eruption temperatures

and mantle temperatures. Even the most conservative estimates

(a 25% MgO, 1500°C lava) imply mantle temperatures about

200 ° C hotter than at present. The widespread 8-10 kbar, 700°-

900 ° C metamorphic conditions in Archean gneiss terranes imply

crustal geothermal gradients not unlike those of today, and

comparable high-P, low-T gradients are also recorded in some

lower grade Archean terranes. These relatively low gradients
and the occurrence of Archean-age diamonds imply thick, cool

lithosphere, seemingly inconsistent with higher Archean heat
flux. Stabilization of a similar or thicker Archean lithosphere

therefore is a major problem. Bickle suggested one possibility

involving density decrease of mantle by melt removal, which
occurred to much greater depths in the Archean due to hotter

mantle temperatures. All these considerations assume a
mechanism of heat loss for the Archean similar to that of today,

i.e., plate tectonics. Other mechanisms, such as vertical

recycling rather than horizontal motions, are possible, but are

inconsistent with the growing geological data base, discussed

during this workshop, which suggests major horizontal plate

motions during the Axchean.
There was extensive discussion of this paper, opened by

D. Abbott, who commented that the Archean ages of diamonds

should not necessarily be taken as evidence that Archean and

modern-day lithospheres had similar thicknesses. T. Jordan's

present-day tectosphere is about 4.00 km thick, and modeling

of Archean sedimentary basins yields estimates of about 200
km for ancient continental lithosphere. Bickle pointed out that

this depends on which sedimentary basins are modeled, and

stated his personal belief that the best constraint on present-
day lithospheric thickness comes from estimates of reduced

heat flow to continents, which indicates that modern continental

lithosphere is about 150 km thick. Abbott asked if any of the

convection models Bickle discussed actually have smaller-scale

upwelling and downwelling cells, and if he could speculate on

how the results would change if these were taken into account.

Bickle Iresponded tha t E Richter's parameterized models include

both plate-scale and smaller-scale convection, but plate-scale

convection is extremely difficult to parameterize because we

do not have a proper understanding of the resistive forces of

plate tectonics, particularly near-surface ones. Variable viscosity

models are so cumbersome that they are not really run over

anything like a realistic set of conditions. Bickle felt that we

will not get much further until they can be parameterized, for

example, by using supercomputers to appropriately scale

viscosity against temperature. Even then, however, we will be

limited by our inadequate knowledge of the viscosity variation

in the mantle. Abbott worried further that the variable viscosity

convection models may not be sufficiently realistic. Bickle

admitted to the possibility that the results may be off by a

factor of two. P. F. Hoffman wondered about Bickle's point

regarding the more "depleted" nature of Archean lithospheric

mantle, stating that there is some evidence from the North

American craton that the Archean lithosphere behaved more

buoyantly than that of the Phanerozoic. Bickle then presented

the results of some calculations that show that "depleted"

lithosphere may actually be slightly more dense than underlying

undepleted mantle. This effect is quite subtle, and may allow

subduction of old lithospheric plates while still preserving them

fairly thick. H. Helmstaedt pointed out that in addition to

diamonds, there are other mineral assemblages in xenoliths

(which give Archean Sm-Nd ages) that could be used to

constrain Archean Iithospheric pressures and temperatures.

P. J. Wyllie directed the discussion to the idea (mentioned

in Bickle and Nisbet's abstract) of the high-pressure density

inversion of komatiitic melt at depth, and the implications for

a subsurface magma ocean. Wyllie showed a slide with some

recent data of Rigdon, Stolper, and Ahrens, who experimentally

shocked silicate liquids to 250 kbar, and confirmed previous

calculations that at no great depths, melt densities exceed that

of the mantle. This could imply a deep layer of MgO-ich melt

(which only rarely reaches the surface) giving rise to and

underlying depleted lithosphere. Bickle added, however, that

Rigdon has recently found pure diopside to be significantly less

compressible than the synthetic mixtures of anorthite/diopside

used in the earlier experiments, and consequently Rigdon

considers the density inversion of komatiite at depth to be an

open question; moreover, as Bickle pointed out, there are many

problems with the results from opposed-anvil experiments.

Bickle also pointed out that if a subsurface "magma ocean"

is to be stable, the solidus curve must slope more steeply than

the adiabat at that depth, or else the melt will eat its way through

its cap. Once again, experimental evidence on this question

is ambiguous, although it remains a possibility. At any rate,

no one has adequately addressed the importance of an Archean

subsurface magma ocean on the thermal evolution of the Earth.

K. Burke and E. G. Nisbet mentioned that both D. Walker

and C. Scarfe are reported to have independent experimental

support for the komatiite density inversion.

The session continued with three contributed talks on various

aspects of Archean melts. P. C. Thurston and L. D. Ayres

discussed volcanological constraints on Archean tectonics. They

suggest that mafic volcanic sequences in greenstone belts were

erupted by sheet flow processes rather than from shield

volcanoes, and that felsic units were produced mainly from

Plinian rather than Vulcanian eruption types. Both eruption rates

and lifespans of Archean volcanic systems are purported to



have been higher than Phanerozoic ones. Volcanological and

geochemical data suggest that basaltic melts ponded in sialic
crust, where they fractionated and induced crustal melting. They

presented evidence that large-scale volcanism-related subsi-
dence kept pace with accumulation. Based on these consid-
erations and the abundant bimodal compositions, Thurston and

Ayres favored a rift analogue rather than an island- or back-
arc setting for many greenstone belts.

D. Elthon discussed the petrogenesis of komatiites in terms
of the compositions of their parental magmas and the degrees

of partial melting required to produce them. He reevaluated
previous estimates of the compositions of primary komatiite
magmas, which contain as much as 33%MgO. Elthon computed
the MgO contents of liquids in equilibrium with the most Mg-
rich olivinecompositions reported from natural komatiites, using
experimentally determined Fe-Mg KD values of 0.28-0.31,
appropriate for 1 atm crystallization between 1450°-1650°C.
The results indicate primary liquids with much lower MgO (22-
25%), implying liquidus temperatures of about 1500°C. Since
these olivines do not appear to be in equilibrium with liquids
compositionally equivalent to their whole rocks, Elthon
concludes that the rocks were enriched in MgO by olivine
accumulation and/or Mg-metasomatism. Elthon also used
pseudo-liquidus phase equilibria to demonstrate that only at
small to moderate increments of melting (< 30%) will melts
.... __11. _..... -J_.-- ---- 41--- r _. _'TV III l_tl.ual

komatiites. HIS results are substantiallydifferent from previous
estimates of high eruption temperatures (> 160(PC) and large
degrees of partial melting (,50-80%) for komatiites.

W. C. Phinney, D. A Morrison, and D. E. Maczuga discussed
the common occurrence in many Archean cratons of large (up
to 20 cm), equidimensional, calcic (Ans0-ge) plagioclase
megacrysts, which occur as: (1) segregations of anorthosite
or in basaltic intrusives and extrusives associated with

greenstone belts, (2) megacrystsin basaltic dike swarms in stable
cratons, and (3) anorthosite complexes associated with marbles
and quartzites in high-grade gneiss terranes. Attempts to
determine parental melt compositions of the megacrysts are
hampered by alteration and metamorphic effects. The data at
present require isothermal crystallization of megacrysts from
tholeiitic melts, followed by entrainment of the megacrysts as
their host melts ascended to the surface. These occurrences

also seem to require that large volumes of mafic melt underwent
similar crystallization histories in both oceanic and cratonic
settings.

Nearly all of the discussion in this period related to komatiite
genesis. K. J. Schulz asked Elthon if his calculations were based
on compositions taken from spinifex-textured olivines; these

may not represent the products of equilibrium conditions. Elthon
responded that the olivines in these rocks were from both
textural types and were assumed to represent equilibrium
conditions regardless of their texture. A. H. Wilson asked how
Elthon knew that olivine-spinel reequilibration took place in these
komatiites. This certainly occurs in layered intrusions where

spineis are commonly zoned, and their compositions are
dependent on their size and ratio of surface area to mass. He
also pointed out that this reequilibration only takes place down

temperature, and that although the change in KD is very small
from 1600° to 1000°C, it changes dramatically at lower
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temperatures. Elthon stated that the temperatures indicated
by olivine-spinelequilibria in komatiites are between about 700°-

800°C. Some volcanic rocks that have equilibration temper-
atures of 1200°-1400°C may have undergone minimal if any
subsolidus reequilibration. One problem with komatiite data is
that it is often difficult to_determine from published reports
the proximity of a given spinelanalysis to a presumed coexisting
olivine. We obviously need more quantitative data with those
petrographic observations. Elthon also pointed out that this
reequilibration effect is rather small--the MgO contents of

inferred parental liquids would only change by a factor of 1-
1.5%.E. G. Nisbet stated that analyses of the cores of zoned
olivinesshould eliminate reequilibration effects. Elthon agreed,
but stated that diffusion distances for Fe-Mg exchange can be
quite large (up to 0.5-1.0 cm for some cumulate rocks). W'dson
commented that the cores of zoned olivines are the best ones

to analyze, because olivine diffusion rates are so high that even
during modest cooling,they commonly become compositionally
homogeneous.

Bickle made numerous comments about Elthon's komatilte

talk. He stated that Elthon's arguments about komatiite
crystallization sequences depend on the choice of mantle
composition. Elthon disagreed, arguing that virtually all
proposed mantle compositions plot below the join connecting
olivineand a low pressure melt. Bickle commented further that
-':" ........ :'_'--- ':'--_"..... "_.... " _-u-p3euuvul_=_.ulnpu_mul_ _e. u_y tu _ontuluauy _:XC w'ith
liquids during crystallization, and that Fe-Mg diffusion
coefficientsare so high that the most Mg-rich olivines may not
be preserved. In addition, published olivine compositions
represent an appaginglysmalldata set--nearly all analyses come
from rocks with about 27% MgO, so the lack of calculated
liquids with MgO greater than 30% is not too surprising. Biclde
also stated that on his (Bickle's) compositional data plot of
komatiitic rocks, a cationic Fe/Mg = 0.23 corresponds to an
MgO content of 27% rather than Elthon's 25%. Elthon
established, however, that Bickle plotted total Fe instead of
separatingFeO and Fe-zCh,which will inherently result in liquids
with higher calculated MgO. Bickle also argued that there are
enormous uncertainties in KD over the range of 27-33% MgO.
Elthon disagreed, stating that there is a clustering of determined
KDS at the values Elthon used, and those for high-pressure

olivine-liquid equilibria that Bickle used are probably not
appropriate for komatiite crystallization. Bickle's final point
related to alteration. He stated that komatiites from Belingwe
have only 1-2% H20, and that N. Amdt quotes up to 99%
fresh olivine in these rocks. Even the smallest olivine microlit-es

are preserved. Since these rocks have comparable compositions
to more altered rocks, when normalized to anhydrous totals,

he feels that alteration is not a major problem in changing
komatiite chemistry.

R. A. Hart then presented some data from modem oceanic
basalts that shows substantial MgO influx and SiOz leaching
during hydrothermal alteration. Data for mafic and ultramafic
rocks from Barberton show a similar slope on an MgO vs.
SiO2 diagram, which Hart interprets as clear evidence of Mg-
metasomatism in the highly altered (up to 16 wt% H_O)
Barberton rocks. Bickle reiterated that the Belingwe greenstone
belt contains very fresh komatiites. Nisbet concurred, stating
that some Belingwe komatiites even contain optically fresh
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glasses,andthatprimaryolivine accumulation trends such as
Na vs. Mg exist: These should be disturbed if there was major
alteration.

B. Gorman commented that 24% MgO seems a bit low for

komatiite liquids considering the data available for glassy parts
of komatiite flows. He also asked Elthon whether komatiites,

picrites, and Mg-rich basalts could be related by low-pressure
fractionation. Elthon stated that these could be related by olivine

fractionation, and that in general komatiites may be related
to a large number of basalts with substantially lower MgO. In
some cases, however, they can be shown to be unrelated in

any simple manner.
M. de Wit raised the question of the volumetric importance

of komatiite in Archean terranes, and asked Canadian

participants to assess the abundance of komatiite in the
Canadian Shield. P. C. Thurston responded, stating that: There
are only two known komatiite occurrences in the Wabigoon

$ubprovince; much less than 1% of the exposed bedrock in
the Uchi Subprovince is komatiitic; there are only scattered
occurrences in the Sachigo belt; and even the Abitibi belt, which

is regarded as being anomalously rich in komatiite, actually
contains very little when considered in a regional sense. K.
Burke wondered why this mattered; the presence of even a
small amount of komatiite in Archean terranes is making a
statement about the ancient mantle. Both Hart and de Wit

were quick to mention the existence of Phanerozoic komatiites
such as the Cretaceous-Tertiary occurrence on Gorguna Island.
Bickle commented that the crucial question is the MgO content

of primitive liquids in the Archean compared to the Phanerozoic.
No one appears uncomfortable with 25% MgO for Archean
primitive liquids, and Gorgona has about 22% MgO. De Wit
pointed out that such difference in MgO may not be sufficiently
large to infer major differences between Archean and
Phanerozoic mantle temperatures. Bickle stated that we
desperately need more compositional data for komatiitic
olivines, particularly from fresh samples. No one disagreed.

E. G. Nisbet agreed that Elthon has identified some major
points, but that he has used the wrong type of logic. Nisbet
stated that the major hole in their own argument, from which

they inferred that highly magnesian (32-33% MgO) primitive
komatiite liquids existed, comes not from considerations of
olivine-liquid Fe-Mg equilibria, but rather from the possibility
of major Mg influx during alteration. Elthon responded that
even in the freshest of komatiitic rocks, the degree of olivine
accumulation is difficult to discern, unless olivine-liquid matching

tests are carried out; phenocryst-liquid matching tests indicate
that komatiites with 24% MgO are not liquids.

Chairman K. Burke ended the komatiite bloodbath by moving

the discussion to other topics. He commented that the usage
by Groves and Batt of rift and platform environments (as quoted
in Thurston's talk) in discussing greenstone belts is entirely
inconsistent with the ways these terms are used by most
geologists. Thurston stated that Groves and Batt's usage of
the term "platform" refers to widespread shallow-water
sedimentation, with correlatable areas as large as 150-200 km
of stromatolitic carbonates. Once again, Burke did not seem
convinced.

The session continued with a talk by D. D. Van Reenen
et eL, who described the metamorphic and structural transition

of the low-grade Pietersburg greenstone belt into the granulite
facies terrane of the southern Limpopo belt (Kaapvaal craton,
South Africa). The Pietersburg belt is at least 3450 Ma, and
consists of typical volcano-sedimentary units, unconformably
overlain by 2800-2650 Ma sediments. The belt is intruded by
2800 Ma gneisses and 2600 Ma granodiorite plutons. These
rock units can be traced 60 km to the north into granulite-
facies assemblages; the transition also involves a progressive
increase in deformational intensity. Van Reenen suggested that
the Pietersburg belt was depressed into the lower crust by
tectonic stacking. Fluids responsible for producing the observed

retrogression are inferred to have been derived by dehydration
of over-ridden lower grade rocks during and after thrusting.

Discussion of this paper was initiated by T. Skulski, who
asked ff there was any evidence for crustal thickening since

the Archean. Van Reenen responded that no post-Archean
magrnatic thickening has taken place. E. G. Nisbet agreed, and
added that the Proterozoic Waterburg sedimentary sequence

may have added only about i km. P. J. Hudleston was curious
about the evidence for increased intensity of deformation in

the granulite facies terrane. Van Reenen confirmed that there
was abundant evidence for high strain in this area, including
isoclinal folding. Original contacts between rock units have all
been tectonically disrupted and later invaded by anatectites.
Granulitic remnants of greenstone belts exist as xenoliths
floating in a sea of tonalitic gneiss. De Wit added that the rocks
were much more homogeneously deformed on the high-grade
side of the granulite isograd. Hudleston asked if the deformation
is consistent with thrusting. De Wit responded positively. Van
Reenen added that during convergence and thickening, slices
of granulites were juxtaposed against lower grade rocks, but
the initial thrusts were overprinted by later granulite grade
metamorphism. M. G. Jones asked if retrogressive features
were also present in the tonalite gneisses. Van Reenen hesitated,
but confirmed that hypersthene was retrogressed to amphibole
in these rocks as well. A. H. Wilson remarked that the olivine
shown did not resemble spinifex. Van Reenen stated that M.

Viljoen and C. Anhaeusser were quite happy to accept these
as igneous textures, d. A. Percival asked if there was any
evidence for extensional features; Van Reenen said there was

none.

The session continued with two contributed talks on thermal

considerations. P. Morgan discussed the thermal implications
of greenstone belt metamorphism, and presented an alternative
thermal model for the Archean continental lithosphere. The

common occurrence of supracrustal rocks (including those of
greenstone belts) as high-pressure granulites presently underlain
by normal thicknesses of continental crust cannot be easily

explained without extensive melting during the granulite
metamorphic event. Maximum metamorphic temperatures
attained for these terranes, therefore, are buffered by the solidus,

regardless of age. It is thus impossible for Archean metamorphic
assemblages to record higher temperatures than those of
modern granulite terranes unless the solidus has changed with
time. The necessarily higher global heat loss during the Archean
should not then be recorded as mineral assemblages indicating

higher geothermal gradients than peak modern gradients,
although these conditions may have been more widespread
during the Archean. The higher Archean heat loss must also
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be reconciled with the existence of diamonds of Archean age,
which seemingly require thick (> 150 kin) Archean lithosphere.
Morgan's solution to this apparent paradox is an Archean
continental lithosphere with no asthenospheric heat flux into
its base. The thickness of such a lithosphere is independent
of global heat loss, so the Archean Earth must have lost its

heat elsewhere, for example, through oceanic regions or a
different kind of continental lithosphere. The internal radioactive

heat production distribution necessary to account for such a
situation requires a small but significant amount of heat
production in the mantle portion of the lithosphere, and results
in a geotherm asymptotic to the asthenospheric adiabat.

Bickle opened the discussion by commenting that Morgan's
model of mantle lithosphere enriched in U and Th should leave
a recognizable Pb isotopic signature, for example, in Archean
mantle xenolithe. He also stated that although the model is
conceivable, it should result in high metamorphic gradients in
the overlying crust. Morgan disagreed, restal_ag that his model
is based on modern-day gradients and modem-day reduced
heat flow values. K. Burke expressed uncertainty as to how
lithosphere could be stabilizedwith higher heat generation from
below. Morgan responded that heat would not he transferred
to the lithosphere from underlying mantle if their temperatures
were the same at the boundary. Bickle wondered how fast
Morgan's model lithosphere would cool. Morgan responded that

that no cooling would be necessary. Burke added that this
seems similar to the problem in explaining why old ocean floor
stops declining in elevation; McKenzie and Weiss called upon
additional convection to keep it high. Bickle returned to the
question of crustal gradients, agreeing that lower crustal
temperatures were buffered by melting, but he pointed out that
wet melting curves, as quoted in Morgan's abstract, may not
apply because the lower crust is probably too dry. Buffered
temperatures would therefore tend to be greater. Morgan
responded that no melting curves were given in his abstract,
and that in any case, the choice of melting curves is irrelevant
because even the dry solidus would he exceeded in the lower

parts of thickened crust that produces granulite mid-way
through the section. Bickle commented further that if lower

crustal gradients are buffered by melting, we should focus on
metamorphic conditions of lower grade rocks to examine
Archean conductive thermal gradients. Although the data is
sparse, he cited several examples of greenschist-amphibolite
grade terranes (e.g., Pilbara, Y'dgarn, lsua) where lower thermal
gradients, essentially equivalent to Barrovian conditions, were
documented from metamorphic assemblages. Morgan pointed
out that even these gradients are likely to be convective rather
than conductive. Bickle stated that it depends where they are

measured. Burke commented that Andean and Alpine gradients
are nowhere conductive. Bickle pointed out that heat flow

measurements in the Alps are complicated by perturbations
due to near-surface water, but that below this zone the gradient
could still be conductive. Morgan added that in places where

these problems can be overcome, the resulting gradients are
too high to avoid crustal melting during thickening. Areas such
as the Rio Grande rift, which can be successfully modeled in
terms of the underlying Socorro magma chamber, indicate that

heat flow is not conductive. Bickle agreed that many

metamorphic terranes exist where magmatic heat transport is
very important, and this is easily documented by elevated
temperatures at low pressures, but there are other terranes
where convective heating is not important. Burke requested
that Biclde name five such terranes. Bickle offered two (the

Barrovian sequence of the Scottish Dalradian and the European
Alps, except for some of the thermal domes) before being cut
off by Burke, who exclaimed that once thermal domes are
recognized, gradients are convective, not conductive. Bickle

stated that the convective parts of these terranes (the thermal
domes) can be recognized and separated from the conductive,
low-temperature, high-pressure parts. These can be used to
make estimates of the heat influx at the bottoms of those crustal

sections. Such perturbed (convective) parts can be recognized
in Archean terranes as well as in younger ones. Burke was
not convinced that there were substantial parts of the world
where metamorphic assemblages did not involve magmatic heat
transfer.

D. Abbott asked Morgan if his model could be tested by
looking at hot-spot thinning of the continental lithosphere.
Morgan responded that since cratons do not generally show
that phenomenon, they are resistant to hot-spot thinning. He
indicated that not all lithosphere should be expected to have
been similar to that described in his model; only if the proper
conditions were achieved would such lithosphere become
_,'-_I.,;I_..I I_AI'_+ _^_4-_I I_I_I.._._ ;_ _l.,.J..l., .,l_If.i_

and might he subject to reactivation. Burke asked if what Morgan
was inferring was that everything that has not been reactivated
could not be reactivated. Morgan responded that there must
he a reason for selective reactivation. Burke stated that all

reactivation is related to coUisional or Andean margin type
activity.

Nisbet commented that Morgan's model has an inherent
contradiction: The lithosphere is enriched in heat-producing
elements, yet it must also he refractory to keep it stable at
those high temperatures. The model is therefore transient
because eventually the heat-producing elements will tend to
escape upward into the crust. Morgan admitted that his model

is not totally stable and that the distribution of lithospheric heat
production will change with time. Burke interjected that such

situations may he transient, but only on a 5-Ga scale; although
the Kaapvaal craton was assembled 3.4 Ga ago, not much has
happened to it since.

Wyllie reminded us that lateral heterogeneities in the mantle
may have relevance to the question of komatiite genesis. These
might be produced by high degrees of melting at local hotter
zones associated with upweiling parts of convection cells. Thus
Archean simatic melts may have been derived from two sources:

those that gave rise to komatiites, and those that produced
near-contemporaneous basalts in "standard" fashion. Burke
endorsed Wyllie's comments as being useful in reminding
participants not to consider the Earth as being (or having been)
radially symmetrical.

D. Abbott and $. Hoffman discussed the possible importance
of ridge subduction and hot spot abundance in greenstone belt
formation. They feel that the oneconsequence of greater internal
heat production of the Archean Earth may have been a greater
proportion of subduction of young oceanic lithosphere, and
that therefore ridge subduction would have been more common.
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They speculate that Archean ridge subduction may have been
dominated by the type in which oceanic lithosphere comprised

both the overriding and subductin9 plates, a present-day
example of which lies in the Woodlark basin of the western

Pacific ocean. Features of this system possibly applicable to
Archean greenstone belts include basalts with arc affinities and

closely spaced volcanic edifices in the associated island arc,
which could thicken layer 2, leading to higher probability of
hyclrothermal alteration and metallogenesis. Another conse-
quence of a hotter Archean Earth may be a greater abundance
of hot spot activity, which may have increased the incidence
of buoyant subduction. Abbott outlined in detail the importance
to their model of the flexural bulge of the subducting plate.

In discussion, J. F. Casey pointed out that there are other
examples of oceanic plates with ridge subduction, such as the

Aleutians. Abbott agreed and stated that high-Mg andesites
occur on the continental plate. Other examples include the
Kula ridge, the Gulf of California, and southern Chile. She
doubts, however, that Mg-andesites would be found in ophiolites
formed at mid-ocean ridges. Casey mentioned that high-Mg
andesites occur in forearcs such as the Marianas and Japan.
He wondered further how Abbott's model resulted in ophiolitic
obduction in an environment of ridge subduction. Burke
suggested they may be analogous to slices in an accretionary
wedge. Abbott agreed, pointing out Eldridge Moore's proposal
that the Troodos and Sarnail ophiolites represent obducted
pieces of hot, young oceanic plates, essentially equivalent to
ridge crests. De Wit asked how Abbott accounts for the almost
total absence of high-M9 andesites or boninites from greenstone
belts. He could think of only one place from which they may
have been reported. Abbott commented that K. d. Schulz
reported high-Mg andesites from northern Minnesota, where
they occur late inthe sequence, and although not very abundant,
they are quite similar to some reported in Japan. Elthon
expressed his surprise about Abbott's reluctance to accept the
high Na and Ti contents of Woodlark basin rocks as being
magrnatic. Abbott inf¢,rmed us that such rocks are dredged
only from fracture zones, where processes additional to those
occurring at ridge crests might be taking place. She could not
account for these rocks in ways other than their being related
to spilites. Elthon suggested that they may have formed by
remelting hydr0thermally altered rocks in fracture zones, but
he does not doubt that their compositions are magrnatic. Abbott
accepted this. Schwerdtner inquired if Abbott's flexural bulge
model was Newtonian and whether it was linearly elastic. Abbott
confirmed this, and added that if the model was made more
viscoelastic the numbers for the stress effect would probably
decrease, but it would also increase the thickness of the layer,
so it is difficult to say which effect would dominate. Discussion
on this question continued, but it was inaudible on the videotape.
Abbott reiterated that there must have been, on average, more
young ocean lithosphere subducted in the Archean. Bickle

commented that there may have been more melting to deeper
levels in the Archean: this could have led to faster spreading.
Both Morgan and Abbott, however, have suggested hot spot
heat loss may have been an alternative mechanism. Burke
commented that if thickened oceanic crust such as that in

oceanic plateaus were obducted, then the sliced-off fragments
might contain only basalts and not ultramafics. This has been

documented in the Caribbean, in southern Malaita, and in
Alaska.

Thurston changed the topic of discussion by commenting
that the occurrence of ash-flow magmatism from 3.0 Ga onward
implies compositionally zoned magma chambers and, in turn,
a relatively constant rate of basaltic magma supply to those
chambers. If basaltic magma were supplied at rates higher than
about 100 km2/yr, then magma chambers would become

dominantly mafic, and incapable of generating ash-flow type
volcanism. Burke commented that this is a statement about

a particular environment, and that others occur in greenstone
belts. Burke wondered further how these considerations

compare with the present-day situation, and Thurston replied
that volume-periodicity relationships indicate much the same
conditions in the Archean.

De Wit then changed the discussions to cratonic areas,
particularly about the transitions from greenschist to granulite
facies. He asked Van Reenen if there is any change in fluid

inclusions from the hydrated to the dehydrated terrane in his
area, as has been documented in India and Kapuskasing,
Ontario. If there is evidence for abundant CO2, where does

it come from, and what are the implications for apparently
associated Au mineralization? Van Reenen responded that his
high-grade rocks are similar to those from India, described by
Newton and Hansen. They are completely dominated by CO2,
with less than 0.2% H20, and there is a progressive change
in density of pseudosecondary inclusions from south to north
across the orthopyroxene isograd. Van Reenen stated that the
hydration of orthopyroxene took place at temperatures as low
as 600°C. In his view, the carbonic fluids were derived from
decarbonation of typical greenstone belt lithologies during and
subsequent to overthrusting. Ass_iated shear zones are dated
between 2450 and 2600 Ma, and are accompanied by CO2
metasomatism. Gold occurrences seem to correlate with these

shear zones rather than with lithology. De Wit asked if Van
Reenen believed the CO2 to be indigenous to the crust, rather
than mantle-derived, and Van Reenen said yes. Wyllie asked
about the abundance of limestone in greenstone belts, and Van
Reenen said there was very little, but that calc-silicates are
abundant. Wyllie then wondered where the original CO2 came
from; Van Reenen offered the possibility that it was derived
from hydrothermally altered greenstone belt lithologies. De Wit
concurred about the abundance of metasomatically altered
material (carbonated ultramafic), and added that the CO2 may
ultimately have been derived from the mantle. Burke asked
for specification as to how much carbonated rock existed in
these belts; de Wit estimated between 1-10%. Burke felt that
in this case there would be enough CO2 available if the belts
were thickened. C. Schiffries added that calculations by J. W.
Valley indicate that only 1-2% carbonate would be needed in
low-grade lithologies to account for the CO2 influx during
granulite metamorphism, and that carbon isotopes show
evidence for crustal reduced carbon. The morning session was
then adjourned by Chairman K. Burke.

J. A. Percival and K. D. Card started off the afternoon's

Session !il (Greenstone Belts: Their Boundaries, their
Surrounding Rock Terranes, and their Interrelationships) with

an invited keynote paper. They reminded the workshop
participants that the major controversies about the tectonic



environment in which greenstone belts were formed exist
because good evidence for specific settings, such as within
continents or oceans, is rare. They believe, however, that the
e_ting data showsArchean volcanic sequences to have much

in common with Cenozoic volcanic arcs. Accordingly, Percival
and Card expressed their belief that most greenstone belts,
and specifically those in the Slave and Superior Provinces of
the Canadian shield, were formed along Andean or Pacific-like
convergent margins. They also noted that a significantalkaline
component of the igneous rocks suitesof the Superior Province
may be related to coUisional events. With respect to the original
relationships between greenstone belts and their surrounding
terranes (which they identify as either metasedimentary belts
or granitoid terranes), every conceivable type of structural,
igneous, and stratigraphical contact appears to have been
recorded, but they noted in particular a major difference
between terrane relationships in the Slave Province and the
Superior Province. In the former, stratigraphic onlap exists
between the metasedimentary belt and the metavolcanic
(greenstone) rocks; in the latter, the metasedimentary belts
alternate with the volcanic-plutonic belts along the tectonic
contacts. Percival and Card briefly reviewed both the plutonic
terranes and the metasedimentary belts. They noted that in
the plutonic terranes, many tonalite-diorite plutons are coeval
with the volcanic hosts, as determined by dating of abraded
zircons ('_precise zircon dating:'). ALso, piutons external to the
greenstone belts are generally similar in composition and age
to plutonswithin the belts. Although some of the plutonic rocks
are older (and represent basement to the greenstone
sequences), contacts are generally intrusive or tectonic. Plutons
of granodiorite-granite compositions commonly post-date the
youngest volcanic rocks of the greenstone belts and their
tectonism by 5-25 Ma. Percival and Card believe that the
tonalitic magrnatism may be genetically related to shallow angle
subduction, while the equally voluminous granodiorite-granite
magmatism may be due to silicic melting during crustal
thickening as a result of collisionalor accretionary events. They
emphasize, however, that collisional processes between

Precambrian blocks have not yet been substantiated by
paleomagnetic studies.

The metasedimentary belts referred to by Percival and Card

consist predominantly of turbidific graywacke and shales.They
constitute a significant component of the Slave and Superior
Provinces. Those of the Slave Province have been interpreted
as part of accretionary prisms; these in the Superior Province
as narrow, elongate transtensional basins along the major
tectonic breaks between crustal blocks. Finally, Percival and
Card expose and comment on what is presently known about
the transitions between low-grade (greenstone belt terranes)
and high-grade (gneiss terranes). They site two types of
transitional relationships: (1) where (low-grade)greenstone belts
can be traced laterally into high-grade metasedirnentary belts
(e.g., the Wahigoon and Wawa belts can be traced into the
Quetico high-temperature/low-pressure terrane); (2) where
(low-grade) greenstone belts can be traced uerticaily or down-

section into their high-grade amphibolite-granulite (high_
pressure/high-temperature) equivalents. Examples of this
second type of transition has been clearly documented in the
Kapuskasing structure (Ontario), in the Pikwitonei region
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(Manitoba), in the northern and southern marginal zones of
the Limpopo mobile belt (as traced from their respective low-
grade granite-greenstone terranes of the Zimbabwean and
Kaapvaal cratons), and in southern India. In the Kapuskasing
structure the lowermost exposed rocks were subjected to P-
T conditions between 7-8 kbars and 700°-800°C; in the
Pikwitonei structure pressures vary between 7-12 kbars (not
unlike those from Southern Africa). In the Superior Province
these adjacent high- and low-grade terranes are thought to
represent different tectonic environments exposed at different
crustal levels. The deeply eroded Southern Andean batholith
(interpreted as the roots of an calc-alkaline volcanic-arc) flanking
the Cenozoic Rocas Verdes back-arc 5a_sinis thought to be
a Mesozoic paired analogue. This interpretation isdifferent from
the proposed models for the high-grade/low-grade transition
of the northern Kaapvaal craton: Here differential uplift following
continental collision tectonics is believed to be a "best fit" model.

During the following three talks, different examples of
relationships between greenstone belts and their surrounding
granitoid terranes were examined: details of an igneous, a
structural, and an unconformable (stratigraphic) relationship
were described in that order; all have profound tectonic
implications.

In the first talk, F. Schwerdtner presented his detailed
observationson selectedgranitoid-gneiss complexesfrom within
the Wabigoon and Wawa greenstone belts. Schwerdtner
explainedhow the fielddata was incompatable with hisprevious
modeis in which he envisagedthe gneiss domes aspurelydiapiric
structures.The new observations clearlyindicatethat the gneiss
domes are lithologically composite and contain large sheath-
likestructures that are deformed early p]utons, distorted earlier
gneiss_omes, or early ductile nappes produced by folding of
planar plutonic septa. Thus, Schwerdtner concluded that
prominant gneiss domes are composed of prestrained tonalite-
granodiorite and represent the dense hoods of magmatic
granitoid diapirs (commonly a syenite-dioritecrystal mush). The
work also impliedthat the synclinal-likestructures of greenstone
belts predate the doming of the granitoids: evidently the early
deformafional history of the greenstone and granitoid-gneiss
domes is far more complicated than ispresently understood.

In the second talk, R. L. Bauer et aL described similarities
and contrasts in structural history and style between the
greenstones of the Vermilion district (northeast Minnesota) and
the Vermilion granitic complex. The two terranes are separated
by faults. Structural analysis in the boundary regions between
the two terranes indicates that both sustained an early (D1)
recumbent folding of regional scale. In the greenstone belt this
folding is attributed to deformation of soft or poorly lithified
sediments. They were able to reach this conclusion because
finite strain analysis on clasts in sedimentary units can be
completely accounted for in terms of a second deformation

(D2). 1)2 formed upright folds and dextral shear-zones during
transpression across the belts. Although in detail the structural
history of the two terranes is similar, differences in structural
stylesand a late stage (1)3) structural history are prominant.
Bauer et aL attribute this to a combined difference in juxtaposed
crustallevels of the two terranes during late deformation and
increased heat flow in the greenstone belt as a result of late-
D2 plutonism.
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In the last presentation, M. Wilks and E. Nisbet described

details of a profound (and probably one of the world's best
preserved) Archean unconformities between the rocks of a

greenstone belt and its surrounding granitoid terrane. The
unconformity occurs at the contact between the Wabigoon
greenstone belt and a ca. 3.0 Ga tonalite complex. At three
localities the tonalite can be traced through a weathered profile
into the overlying sediments of the Steep Rock Group. The
latter comprises a basal conglomerate, a thick stromatolite-
bearing carbonate member, and a manganese-iron-rich ore zone
that locally contains aluminous kaolinite and gibbsite
(interpreted as a ferruglnous bauxite, and indicative of an
oxidizing atmosphere); the section terminates with a sequence
of ultramafic pyroclastic rocks (22% MgO) that contain thin
spinifex-bearingkomatiitic basalts (15% MgO). If the Steep Rock

• unconformity oncewas more widespread, it has apparently been
obliterated elsewhere in the Wabigoon greenstone belt during
intense tectonism.

P.Hoffman kickedoff the discussion by asking F.Schwerdtner
if it was possible to establish the kinematics of shear associated
with the development of the lineations in the rocks he had
described. Hoffrnan pointed out that he would be most
convinced about the diapirism if Schwerdtner could demon-

strate an "upside down" sense of shear on opposing sides of
the dome. Schwerdtner didn't know if he could approach the
kinematics using the lineations, but he tried using the folds.
He reiterated that the leucocratic center of the gneiss dome
was fringed by a mixed zone containing relics of greenstone
lithologies; in this envelope there is abundant folding.
Schwerdtner said that he had studied the asymmetry of several
hundreds of these folds, and although fold styles are variable
and there is abundant refolding, the results indicated that the

dome had risen relative to the surrounding areas. The test was
only completed around two-thirda of the dome's periphery for
lack of enough folds along parts of the dome. Hud]eston
commented that the iineation in Schwerdtner's dome v_a_the

result of cumulative deformation, much of which appeared to
have predated the doming. Schwerdtner agreed, but pointed
out that he could not be sure how much of the strain was

earlier than doming; he had not encountered the type of strain
markers needed (i.e., features of known geometry at the start
of doming) to quantify this accurately. He explained that the
structural map represents only the total strain, but he wasn't
at all convinced yet whether or not the lineation entirely predated
the doming. De Paor asked if it is necessary to involve two
phases of deformation; he commented on the fact that the
strain pattern looked as if it could have developed in one phase
if an anticyclonic vorticity was applied to the incremental strain
field. Schwerdtner replied that this would only apply if the domal
structure was prefectly symmetrical, which it was not, and he
had therefore not considered this possibility. W. R. Muehlberger
had noted that all the folds in the region of the dome area
had an "S"-shaped geometry. He wondered if the doming had

not occurred during regional simple-shear. Schwerdtner thought
that this was unlikely since the shearing was dextral in the
area just to the south (near the Quetico fault), and one would
expect "Z" folds. De Paor remarked, however, that it was not
uncommon to find areas of dextral and sinistral shear zones
(or wrench faults) in close proximity of one another_

Schwerdtner had no objections to having regional shear during
doming. Again, his main point was that if one started with an

undeformed rock and deformed it into subcircular structure,
the structural patterns that he had documented could not be
accounted for. An earlier structure must have been there before

the rising of the dome: It may have been a synchronous process,
but an earlier strain had to have been there before the

subcircular structure development. Hudleston tried again--
"Could it not have been a synchronous process as D. De Paor
suggested?" Schwerdtner was adamant and could not see how

that was possible and he doubted if there was any experimental
way of showing it. De Wit asked if Schwerdtner might not
consider more complicated modeling using a finite element
difference approach that incorporated questions posed by De
Paor and Hudleston. It was certainly true that during the course
of this meeting we have learned that there was a lot of horizontal

shortening across greer_tone belts. It would be interesting, for
example, to compare field patterns with model patterns of a
system that integrated diapirism with overthrusting.
Schwerdtner agreed. D. Abbott asked Schwerdtner if he could

comment on the rheology necessary to develop domes; Does
it require a certain set of viscosity contrasts? Would juxtaposed
rocks of the "wrong" contrasts not sustain any doming?
Schwerdtner replied that given the presence of dilatant openings,
diapirism would develop even if the (lowermost) medium was
dense (provided it was very fluid). In these cases the fluid would

not rise to the surface; it would only rise until it reached
equilibrium between the overburden pressure and the weight
of the diapiric column. Schwerdtner believes that there are

examples in some areas where this might have happened:
magmatic crystal mushes, for example, rising into fault zones
and other dilatant structues. Such fluids are not Newtonian;
they are either Bingham bodies or behave as nonlinear

(sometimes called pseudo-plastic) fluids: they all have a yield
point, however low. Martyn then asked ffyou could not produce
the lineations by crustal extension and at the same time produce
a (sedimentary) cover into which the diapirs (of the stretched

basement) could rise isostatically, again a continuous process.
Schwerdtner answered no, because in the area there is a vertical

lineation that formed by transverse compression; he went on
once again to emphasize that he could not properly determine
the path of deformation of the body itself from the finite strain
patterns. We need more clues to establish the increments of
deformation that collectively led to the final results. He said

that he was working on this, using conventional structural
analysis of boudins, veins, folds, porphyroblasts, etc. He outlined
one new interesting approach that he was investigating: the
use of intensity of rock anisotropy, such as lineation or foliation.
He explained that, for example, if a rock develops a gneissic
fabric to such an intensity that it can no longer contract
(redeform) uniformly along its strain trajectories, any following
stress increment that tries to compress that lineation will buckle
it. Schwerdtner believes that is a type of increment that you
can document and work with to decipher the deformation path.

K. Burke pointed out a more general problem related to
granitic intrusions and possible diapirism in mountain belts: D.
Hodge (S.U.N.Y. Buffalo) had been examining the problem of
partial melting of a continent and separating a granitic minimum
melt and had found that the viscosity contrasts were so small
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between a minimum melt and warm continental rocks that it

was hard to get the melt material to move up; a crustal fracture
had to be created in order to get the granitic fractions to rise.
The comment was then transformed into a question. Did
Schwerdtner have any idea of the originalshape of the granitic
material before it became a diapir? Whereas in salt-dome
terranes it was well known that the originalsaltwas horizontally
bedded, such an inferred geometry could not easily be inferred
granitic environments. Schwerdtner replied that he did not
know.

P. Hoffman commented that the succession described by
Wilks and Nisbet was apparently very like those of the early
Proterozoic platform sequences. He wondered ff the late stage
subsidence recorded in the Steep Rock sequence might be

explained by textural loading, perhaps by tectonic thickening
of a thrust belt. ff so, the uplift needed to form the bauxites
in this succession might be due to a migrating flextural bulge.
Hoffman stated that in the absence of evidence of faulting, such
a model might be more realistic than one that involved
subsidence due to crustal extension. M. W'dks replied that there
is normal faulting in the area. Hoffman asked ff these faults
perhaps post-date the stromatolite formation and pre-date the
iron formation. Wilks replied that normal faults offset the entire
Steep Rock succession, and that, interestingly, the matic dikes

intruded along the fault planes. These dikes are thought to
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been present prior to their deposition.
Hoffman asked Percival if he could distinguish between an

inter-arc rift to account for the metasedimentary belts as
opposed to unrelated arc collisions that had caught up
accretionary prisms or peri-arc basins, Percival replied that the
only evidence he could cite to substantiate a rift-type of
environment was the high heat flow implied from the
metamorphic assemblages.He stated that accretionary prisms
tend initially to have very low heat flow (low-T, high-P blueschist
facies metamorphism), and were often later overprinted by high-
temperature/low-pressure conditions. It was not clear if such
evolved metamorphic patterns were present in the metased-

imentary belts. D. Davis remarked that he found it interesting
that people reach opposing conclusions using the same data
base. For example, Garth Edwards used Davis'
U-Pb zircon date to try to test the idea that the Superior Province

represents a progressive accretion of island arcs that grow
younger from north to south across this terrane. However,
if you look at Davis' poster session, which portrays at least
200 analyses, you will see that between the period of 2750 Ma
and 2700 Ma there is simultaneousvolcanic and plutonic activity
over the entire Superior Province. He believes that this totally
discredits the model of progressive accretion. Moreover, there
are other detailed studies (such as in the Wabigoon greenstone
belt, with more than 60 analyses) that imply that there is
absolutely no evidence of older material in these rocks. This

strongly suggests that they developed in ensimatic environ-
ments, and it could be that they developed as an island arc
system. On the other hand, there are marginal conglomerates
in the greenstone belts that flank gneiss belts (i.e., the English
River belt and in the central part of the Wabigoon subprovince,
both of which are ca. 3.0 Ga), which suggest that the greenstone
belts developed adjacent to continental crust also. Davis stated

that he therefore favored a model of widespread cratonic rifting
throughout the SuperiorProvince; he sawno role for subduction
at this point. M. Bickle asked if there was agreement that the
younger stages get younger to the south. Davis replied that
there was only a secular variation in that the youngest volcanic
sequences(2710-2700 Ma) occurred in the southern belts (i.e.,
the Wawa and the Abitibi belts). A general discussion followed

as to whether or not the geochronological patterns could be
interpreted as a result of colliding arcs. Davis did not think
so, but there was no overall agreement among many of the
Canadian participants.

This session continued with the final four contributed talks.
D. R. Hunter et al. presented the results of their work on the

southeastern sectionof the Kaapvaal craton. The talk was given
by A. H. Wilson. In southwestern Swaziland, a > 3.5 Ga suite
of tonalite-trondjbemite gneisses and amphibolites comprises
the oldest-dated sialic rocks in the Kaapvaal craton, and may
represent the basement on which younger greenstone belts
accumulated. Evidence includes a complex structural pre-
history not seen in the greenstone lithologies, and structural
superposition of greenstone on gneisses. The abundance of
metaquartzites and metapelites in the greenstone sequences
supports a nearby sialic basement. Greenstone remnants
include different proportions of komatiite, high-Mg basalt,
tholeiite, subvolcanic intrusions, clastic and chemical sediments,
rhyolitic air-fail tufts, and tiows, l--he differences between these
remnants represent either different exposural levels and/or ages
of accumulation. Isotopic data at present cannot distinguish
between formation at -3.6 Ga with resetting at -3.1 Ga, or
formation at -3.1 Ga with contamination by 3.5 Ga sialic crust.
The terrane was intruded by mantle-derived tonalites and an
anorthositic layered intrusion (3.3 Ga?), by sheet-like granitoid
batholiths (3.2-3.0 Ga), and a potassic granite batholith (3.0
Ga). After this period, uplift, weathering, and minor volcanism
took place, coinciding with the beginning stages of the thick
rift-like sediments that constitute the Pongola intracontineotal
rift (-3.0-2.8 Ga).

R. E. P. Fripp then presented a tectonic synthesis of the
Ydgarn Craton of western Australia, which contains about 70%
granitoid and 30% greenstone. Granitoids include pre-, syn-,
and post-tectonic types. The youngest of these (-2.6 Ga) are
temporally equivalent to the youngest greenstone belts, which
are up to about 2.8 Ga. Although most greenstone-grardtoid
contacts are tectonic, most workers agree that pre-greenstone
sialicbasement is preserved in places. The greenstones have
been interpreted in terms of three large basinal structures, one
ofwhich is considered to be a rift, but Fripp presented structural
data that show that when restored the entire greenstone
package might have constituted a single basin. There is
structural evidence for foid-nappe and thrust-nappe tectonics
as well as large-scale imbrication or slicing,not unlike that seen
in young fold belts.

G. N. Hanson, E. J. Krogstad, V. Rajamani, and S.
Balakrishnan discussed the Kolar schist belt and surrounding
gneissterranes of south India. The talk was given by Krogetad.
The schistbelt itself evidently represents a discontinuity between
two granodioritic gneiss terranes with different ages, structural
styles, and compositions. East of the schist belt are relatively
homogeneous granodiorite gneisses intruded at 2529 + 1 Ma,
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and metamorphosed to amphibolite grade at 2520 Ma. To the
west of the belt are older (2610-2550 Ma), more complexly

deformed gneisses, some of which show evidence for
contamination with 3200 Ma basement. In the schist belt, two

suites of komatiites and tholeiites can be distinguished on the
basis of REE, but Sm-Nd isotopic data from both suites lie
along an "isochron" of about 2900 Ma. Hanson and colleagues
interpret the Kolar schist belt as marking the site of a suture
between two late Archean continental terranes.

S. M. Naqvi ended the session with a talk on the tectonic
evolution of the Chitradurga schist belt of south India. About
80% of this belt consists of detrital and chemical sediments,

including conglomerates, quartzites, graywackes, shales,
phyllites, carbonates, banded iron formations, and banded
manganese formations. The graywackes represent debris
derived from gneissic and K-rich granitic sources. Rare earth

element patterns of these rocks have both positive and negative
Eu anomalies, an unusual feature among Archean sedimentary
rocks. The volcanic rocks of the belt include ultramafic
komatiites as well as rnaflc, intermediate, and acid volcanics.
Most of the belt is greenschist facies, but locally reaches

amphibolite and granulite grade. Structures indicate that
horizontal compression, possibly related to collision tectonics,
played a major role in the development of the belt. Naqvi offered
two possible tectonic models for the Chitradurga belt: (1)
development in rifted Archean continental crust, followed by
collapse, shallow subduction, and horizontal compression; or
(2) development on oceanic crust, followed by horizontal motion
and welding of two separate continental blocks along a suture.

The discussion was opened by J. Veamcombe, who asked
Wilson to clarify what he meant by "stabilization" of crust. He
suggested that care must be taken not to give the impression
that the Kaapvaal craton was "stable" since 3.0 Ga. He pointed
out that there are five major Precambrian sedimentary basins,

major thrust events in the Witwatersrand basin, intrusions like
the Bushveld, and major Proterozoic transcurrent faulting with
substantial associated mylonites. Wilson responded that he was
only referring to events in his area (i.e., the southern part of
the Kaapvaal craton); his results should not be taken as a general
model for the entire Kaapvaal craton. K. d. Schulz asked Wilson
about his evidence that the oldest event in his area pre-dated
the Barberton belt. Wilson responded that the isotopic data
is at present equivocal. Although no basement to the greenstone
belts is presently observed, they assume a pre-3.5 Ga sialic
crust existed, based on Hunter's work in the ancient gneiss
complex of Swaziland. Naqvi asked Wilson to clarify what he
meant by "initial" vs. "final" stabilization. Wilson explained that
final stabilization referred to a large influx of granitic material
that stabilized the crust on which the Pongola sediments were
deposited. Initial stabilization refers to a crustal thickening event
during which earlier sialic material was deformed. Hoffrnan
inquired if the ages Wilson quoted were from zircons or Rb-
Sr isochrons. Wilson said that some were Rb-Sr, others Pb-

Pb, and he reiterated that at the present time the geochronology
is equivocal. Two good Pb-Pb isochrons on komatiites from
Nondweni give ages of about 3.15 Ga, whereas Sm-Nd data
on the same rocks gives an age of about 3.5 Ga.

Nisbet asked Naqvi to elaborate on the REE signature of
the sedimentary rocks he described in terms of Taylor and

McLennan's crustal evolution model. Naqvi explained that
although Taylor and McLennan's work indicates that
graywackes older than 2.8 Ga do not have Eu anomalies,

graywackes and associated shales of all ages (e.g., 3.5-2.5 Ga)
from Chitradurga have negative Eu anomalies. These anomalies
appear to reflect incorporation of secondary minerals at the
time of deposition, rather than a signature from their source
areas. Ludden inquired about the evidence for this. Naqvi
explained that Eu anomalies in these rocks can be correlated
with other chemical features: shales or graywackes with high
Fe content have positive Eu anomalies, whereas those with
high K20 have negative Eu anomalies. He illustrated this with
a slide showing spectacular negative Eu anomalies in graywackes
older than 2.9 Ga. Ludden asked about the REE patterns of
older tonalites and trondhjemites from this area; Naqvi
responded that those rocks have smooth patterns with no Eu
anomalies.

De Wit asked Fripp if he thought that, on a large scale,
the entire Yilgam craton represents a section through a fold
and thrust belt, and if so, what was the polarity of the thrusting.
Fripp responded positively to the first part of the question,
but said that kinematic data are not available yet to determine

thrusting directions.
T. Barrie asked Krogstad if the volcanic rocks used to

construct his Sm-Nd isochron were cogenetic. Krogstad
explained that the komatiitic amphibolites from the western
Kolar can be modelled using trace elements as having been
derived from a similar source with varying LREE depletion. The

eastern amphibolites are not necessarily associated; they appear
to have been derived from an enriched source. Since the eastern

amphibolites have a galena model age of about 2900 Ma, there
is some evidence to support these as temporally equivalent
to those from the western side of the belt. A more satisfactory
method is needed, however, to determine ages of amphibolites.

Ludden pointed out that recent data from Kambalda show the
danger of interpreting Sm-Nd isotopic data in terms of isochron
relationships; there they have been demonstrated to be mixing
lines. Krogstad agreed that care must be taken to show
comagmatism between rock samples before extracting age
information from Sm-Nd data. The session was adjourned by
Chairman P. Hoffman.
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Introduction

During the evening following the close of the technical session,
the participants were divided into the working groups that met
to evaluate critically the ideas and data presented at the
workshop, formulate or reformulate a set of important
questions, and outline what should be done in future research
efforts to answer some of these questions. Working Group
I consisted of 18student participants; Working Group 1Iincluded
38 of their ostensible mentors. The conveners felt that it would

be fruitful for the students, who represent the future as well
as the present of greenstone belt research, to meet separately,
and thereby become better acquainted with one another, and
have an opportunity to discuss those matters in an environment
free of influence from their teachers. This turned out to be

a good idea. The conveners, perhaps injudiciously, decided not
to attend either of these meetings. Each of the groups was
asked to select a spokesperson, who would then summarize
the delibrations in a short presentation in the next morning's
plenary session. T. Skulski was selected to represent Group
I, and R. E. P. Fripp presented Group II. Written summaries

Working Group k Recommendations and Suggestions

1. The time has come for adopting a quantitative approach
to solving Archean geological problems. This requires the use
of precise and accurate terminology in describing what is
observed.

2. There is a need for objective mapping of greenstone belts.
3. We recognize the need for the development of chronos-

tratigraphic columns in Archean greenstone belts. Archean
marker beds are more difficult to delineate given the absence
of fossils and poor state of preservation. Tune lines should be
developed utilizing geochronology (high-precision U-Pb zircon

techniques) and marker beds such as air-fall units, ignimbrites,
and plagioclase-megacryst bearing lava flows.

4. We have to quantify the depth of depositional basins. Can
we say anything better than above or below wave base? Pillow
vesicles in glassy rinds may have applications here.

S. We need to quantify the true and original thickness of
Archean supracrustal successions. Strain and kinematic
analyses can help constrain this.

6. Potential method geophysical techniques can complement
field mapping in constraining the configuration of greenstone
belts.

7. There is a consensus that the understanding of greenstone
belts cannot be achieved independent of their adjacent high-
grade terranes.

8. What is the significance of hydrothermal alteration in
Archean greenstone belts? Detailed studies of associated

sulphide mineral deposits may enable inferences to be made
on tectonic setting.

9. A critical evaluation of the role of komatiites in greenstone
belts is required because of its implications on crustal evolution

and the Earth's thermal history. The following problems have
to be addressed:

extrusive vs. intrusive relations (Barherton?)
role of contamination

origin of spinifex texture (Barberton?)
extent of Mg-metasomatism

10.We need to know what the source regions are for Archean
sediments. Detailed studies of clastic materials can provide
information on source areas, some of which may no longer
be present. When integrated with facies analyses these studies
provide constraints on granite-greenstone evolution.

11. The validity of uniformitarianism can be tested by
comparing Phanerozoic tectonic envirorm_nts with Proterozoic
mobile belts and Archean granite greenstone terranes.

Working Group II: Recommendations and Suggestions

was needed to build on our incomplete understanding of
Archean processes. Many of the secular changes that have
been proposed, for example, the geochemical signatures of
sediments and the relative abundances of "AI-depleted" lavas
and K-rich granites, may not be as convincing as first thought.
Most workers now seem to agree that modem tectonic
processes are appropriate analogs for the Archean. It must
be emphasized that greenstone belts are not just Archean! The
group made the following recommendations for future work:

1. Compare Archean greenstone belts with possible modem
analogs, including: southwestern Japan, Coast Ranges (British
Columbia), Sierre Nevada (Klamaths), Central Newfoundland,
Eastern Australia (Paleozoic), Rocas Verdes (Chile), active arcs
and rifts such as the U.S. Basin and-Range, and the Taupo
Volanic Zone (New Zealand).

2.Future conferences could be held on structural techniques.
Field workshops emphasizing modem tectonics (e.g., ophiolites,
rifts, arcs) were a popular recommendation.

3. Future research should involve an integrated approach,
including high-resolution geochronology, structural/stratigra-
phic work, geophysical techniques, remote sensing, metamor-
phic petrology, and theoretical modeling.

Spokesmen Skulski and Fripp gave short presentations
summarizing these recommendations, and short disciplinary
summaries were then given by representatives selected by the
conveners. These summarizers were asked to submit short

written version of their viewpoints, which are included below.
There was extensive discussion among nearly all of the

participants during this final session. We have not, however,
included a detailed account of these discussions because most

of the points raised can be found incorporated in the written
contributions that follow.
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A Tectonic Viewpoint

Kevin C. Burke, Lunar and Planetary Institute, 3303 NASA
Rd. I, Houston, "IX 77058

Many different tectonic environments were described from
greenstone beltsduring the meeting and allaspects of the Wilson
cycle of ocean opening and closing appear to be represented.
A breakthrough was the description by Wtlks and Nisbet of
what appears to be a fragment of a well-developed Atlantic-

type or rifted continental margin from Steep Rock Lake
(Ontario). Sandstones and conglomerates there overlie a
tonalitic basement and are themselves overlain by up to 500
m of stromatolitic carbonates above which a iaterite bears

witness to the oxidizing character of the terrestrial atmosphere

about 2.8 Ga ago.Steep Rock Lake lies on the southern margin
of the h/ghly tectonized Wab/goon belt and appears to be an
isolated, well-preserved fragment of an Archean rifted margin
that has elsewhere been completely obscured by later
deformation.

The idea of overwhelmingly intense deformation (which only
a few small areas escape) as the dominant feature of greenstone
belts emerged from many of the talks and especially from the
poster presentations of detailed field mapping. Numerous
participants referred to rift environments, although as Burke
and Sengor pointed out, these would have to be perceived
(in the intensely deformed greenstone belts) through
obscuration by later processes. Some contributors spoke of
"ensimatic rifts" or of "narrow ocean basins" (e.g., Davis et
aL), but all oceansare narrow twice: once when they first open
and once just before they close. There is no way of telling
from a suture zone how wide the ocean was that has closed

to form the suture. De Wit presented superb detailed maps
of an ophiolite approximately 3.6 Ga old from which it would
appear that, however wide or narrow the Archean oceans might
have been, the rocks underlying them were very like those
of today's ocean.

Thurston and Ayres described the bimodal volcanic rocks
and related volcanic structures of the Superior Province, which
closely resemble those in the rifted crests of Andean volcanic
arcs (e.g., the Taupo province of New Zealand). An alternative
analogy that they also suggested (to the Rio Grande rift) seemed
less likely. It is probably significant that Andean margins are
prominently represented in. greenstone belts because of the
huge volumes ofigneous material (representing both that newly
added to the continents and older reprocessed crust) in these
areas.

Features formerly thought to be distinctive features of
greenstone belts (e.g., confinement to the Archean, occurrence
of very thick continuous sections, and occurrence of sediments
without europium anomalies) were shown to be unreal by
numerous authors and the old question "What was distinctive
about the Archean?" was answered "much less than some of

us thought ten years ago."
The thermal state of the Earth was clearly different. Heat

was generated at a much higher rate in the Archean than it
is now. Komatiites are probably evidence of this, but some
participants (e.g., Elthon and Hart) indicated that they might
represent lessextreme conditions than had been widely thought.

Although the workshop profited from full discussion and flank
exchange, there is an obvious need for more of this kind of

dialogue betweeen structural geologists, petrologists, isotopic
workers, and theoreticians. Discussions in the field are likely

to prove particularly stimulating, especially in the best-exposed
areas of Africa, India, and Australia.

A Geochronological Viewpoint

D. W. Davis, Dept. of Geology, University of Toronto, Toronto,
Ontario MSS 2C6

The Archean presents a number of difficulties for geoch-
ronology. It is now well known that the application of "soft"
geochronological techniques such as K-Ar and Rb-Sr mineral
isochrons do not give ages for igneous emplacement but record
some later metamorphic overprint. At an early stage it was
hoped that this problem could be overcome by the use of Rb-
Sr whole-rock isochrons or U-Pb dating of zircons, which were
thought to be able to penetrate the "veil of metamorphism"
and record primary igneous events. The precision of the whole-
rock method is generally limited to a few percent of the age
because of the limited spread in Rb-Sr ratios that can be
generated within a suite of rocks. This is considered to be
sufficient, however, for resolving orogenic events. Uranium-lead
analysis of zircon offered the potential for more precise ages,
because of the use of more than one decay system and the
fact that the daughter element is almost entirely radiogenic.
Zircon is, however, subject to recent, partial lead loss, indirectly
due to the accumulation of radiation damage that renders the
crystal chemically reactive and subject to later alteration (Krogh
and Davis, 1974). Because of the multiple decay systems lead
loss can he corrected at the expense of reduced accuracy.
In addition, zircon is susceptible to problems of inheritance
or the presence of xenocrystic grains derived from older source
rocks or inclusions.

Over the past decade, the introduction of advanced analytical
techniques such as high-precision, high-sensitivity mass
spectrometry, low contamination chemistry, and ion microbeam

technology has lead to an upgrading of classical geochronological
techniques and the introduction of some new methods.

Development of the Sm-Nd whole-rock isochron method has
made it possible to obtain ages on mafic rocks, which are often
not datable by Rb-Sr or U-Pb methods and which commonly
form the base of greenstone sequences (Hamilton et aL, 1979).
The rare earth elements are considerably less mobile than
rubidium or strontium, making the method less susceptible to
open system behavior.

The introduction of the Ar/Ar method combined with step
heating has led to a considerable improvement in the precision
and reliability of ages compared to the K-Ar method. Ages
obtained by this method for Archean rocks, however, still tend

to be younger than those measured by Sm-Nd and zircon
methods (Lopez Martinez et aL, 1984; Morrison et oL, 1985).
Nevertheless, the method may hold considerable promise for

dating later disturbances, especially if applied to individual
minerals whose argon retentivity is well understood (Hanes el
al., 1985).
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Recently a high-sensitivity ion microprobe capable of resolving
mass interferences has been developed by a group led by
Compston at the Australian National University. This
instrument is capable of producing U/Pb isotopic analyses on

polished zircon grains from spots 30 microns in diameter
(Compston et al., 1986). Although the ages are at best of
moderate precision, it is possible to date different generations
of zircon growth within a single grain. Continued applications
will determine the reliability of this method, but it promises
to be of great value, especially in complex metamorphic terranes.

The high-precision U-Pb method was developed largely

though the work of Krogh (!982). Since the author regards
this as the most important method for detailed, accurate work,
it will be discussed in some detail. The method involves selection

of uncracked, clear zircon grains and removal of the outer rim
of the crystals by abrasion. Apparently, much of the lead loss
in zircon is confined to alteration along cracks and high uranium
zones on the rims of zircon crystals. Selection of near-perfect

grains and abrasion in most cases results in a reduced uranium
level, almost negligible common lead, and considerable reduction
of lead loss. This makes it possible to routinely measure ages
to a level of precision of one part per thousand.

The stringent demand for sample quality in high-precision
work makes it essential to have the capability of analyzing very
small fractions. Enhanced ion transmission due to the use of

analysis of zircon fractions on the order of ten micrograms.
With ion counting techniques it is possible to analyze single

grains with ordy slight loss of precision. Analytical blanks of
less than ten picograms are also necessary and achievable.

One of the principal limitations of the zircon method is the
restricted range of rock compositions that contain low uranium
zircon, generally intermediate and felsic rocks characteristic
of later greenstone magmatism. Zircon is rare in the lower,
largely mafic sequences. Baddeleyite (ZrOz) gives reliable ages
but this mineral occurs only rarely in some mafic rocks.

-The reliability of the method for dating Arcbean rocks has
been demonstrated by extensive application throughout the

Superior province (see abstract by Davis et ai.). The short
time spans for some Archean magmatic cycles revealed by part
of this work make it essential to apply high-precision methods

to resolve geologic events.
Another result has been to show that many Rb-Sr whole-

rock age determinations, formerly thought to be reliable, are
on the order of 100 Ma too young, even on low-grade rocks
such as late tectonic plutons (Birk and McNutt, 1981). The
whole-rock isochron method involves a number of assumptions,
such as closed system behavior, the assumption that all samples
are cogenetic, and that they all had the same initial isotopic
ratio. Whereas lack of collinearity of the data points indicates
a violation of these assumptions, collinearity supports but does
not prove them. Disturbance of the Rb-Sr ages may be due
to a violation of the first assumption because of late movement
of alkali-bearing fluids through the crust. This would accord
with the observations by Corfu (1986), which suggestthat during
the late Archean the crust may have grown by a process of
underplating so that deeper crustal levels are younger. Fluids
released by this process may have disturbed Rb-Sr systems
at higher crustal levels. Even some of the assumptions for Sm-

Nd whole-rock dating have been called into question in several
cases where ages inconsistent with U-Pb measurements have
been found (Cattell et aL, 1984). Therefore, efforts to define

orogenies largely on the basis of Rb-Sr whole-rock ages
(Stockwell, 1982)may result in "hydrotbermal" events recording
metamorphic activity at the base of the crust and only indirectly
related to the igneous and deformatlonal history of the rocks
themselves.

From the point of view oftectonics, thedating of deformationa]
events and the precise characterization of the ages and
metamorphic history of crustal terranes are of the greatest
importance(e.g., see abstract by Hanson et al.). Deforrnational
events can be bracketed by precise ages of samples, which
can be shown on the basis of field relations and metamorphic
texture to be older or younger than deformation. Thus, regional

deformation in the Superior province has been shown to be
a late event, following volcanism and lasting no more than about
30 Ma.

An idea of the thermal history of an area can be gained

by analyzing more easily disturbed minerals such as sphene,
ruffle, and monazite. The sphene found in greenstone-associated
rocks tends to give ages close to zircon while spbene from
metaplutonic areas tends to be younger than zircon by several
tens of million years (Corfu et ai., 1985; Davis and Edwards,
1985). This indicates a slower rate of cooling for the metaplutonic

them. Much more needs to be understood about the blocking

temperatures and conditions for metamorphic growth of these
accessorymineralsbefore their full potential can be realized.

The general absence of inheritance in zircons from
-greenstone-associated rocks has-already been _noted issue
abstract by Davis et al.). This suggeststhat older continental
crust was not involved in formation of the more fractionated

greenstone belt lithologies, which may therefore have evolved
in an oceanic environment. In contrast to greenstone belts,

some high-grade metaplutonic terranes in theSuperior province
have been found to contain rocks with zircon populations of

mixed age and to show widespread evidence for old sialiccrust
of pre-vo]canicage.

A number of different possibilities can be envisioned for the

tectonic relationship between the metaplutonic and the
greenstone terranes. If the greenstones were floored by an older
sialic basement, then evidence for inheritance in the zircon
populations should be present throughout the evolution of the
belt. If greenstones originated as rifts within an older continental
terrane, inheritance may be present only in the earliest rocks,
such as the lower bimodal, tholeiitic sequences. A late collision
between an island arc and a continent might be expected to
produce inheritance in the youngest igneous rocks.

The absence of inheritance is weak evidence, however,

because older xenocrysts may have been selectively avoided
dudng sample selection and because xenocrystic zircons may
have dissolved in the melt (Harrison and Watson, 1983). A
recent study using the ion microprobe to date zircon xenocrysts
in basalts is a case where inheritance has been found (Compston
et al., 1986).

Another way to study crustal contamination is to obtain
reliable Sr, Nd, or Hf ratios on selected mineral grains from
well dated rocks. Examples are the work of Hart and Brooks
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(1977) and Machado (1985) on clinopyroxene, and Smith et
a/. (see abstract in this volume) on zircon. Model initial ratios
obtained from whole rocks may, in some cases, be of
questionable value in view of the problems with whole-rock

ages.
Single grain analysis of zircons in the metasedimentary belts

can be used to constrain the provenance and time of deposition
of the sediments (Scharer and Alle(_'e, 1982; Gariepy et aL,
1984). Present evidence indicates that deposition of some of
these sediments in the Superior province may predate
development of the late _eenstone belts and they may be part
of an early cratonic succession (see abstract by Percival and

Sullivan; Wood et ai., 1986).
Geochronological techniques were originally developed to a

large extent by physicists and chemists, many of whom had
a limited understanding of geological complexities. Many
geologists, on the other hand, have accepted ages without much
consideration for their meaning, reliability, or even the quoted

errors. It is important, therefore, to encourage an interdisci-
plinary approach to the problem of age dating. Geochronologists
should have at least enough geological experience to follow
proper sampling procedures while field geologists should be
aware of the limitations inherent in any method. A "black box"
or mechanized approach to the operation of geochronology
labs may lead to the production of large amounts of dubious
data, and a general cynicism in the geological community.

In conclusion, we have entered a new generation of
geochronological and iosotpic research characterized by high-
precision, high-sensitivity measurements on selected mineral
phases, and a shared expertise between geologist and
geochronologist. This will lead to the production of much
stimulating data and is certain to modify our views of tectonic
processes during the Archean.
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A Structural Viewpoint

R. E. P. Fripp, Western Australian Institute of Technology, Kent
Street, Bentley, Western Australia 6102

This workshop has been both significant and timely. The
data presented has strongly underscored concepts and
interpretations about the structure of 9reenstone belts that
evolved in southern Africa in the period 1963 to 1974, and
that involved the documentation of thrusting and fold nappes
in the Archean.

There is a world-wide picture emerging of early recumbent
isoclinal folds in many Archean 9reenstone belts, with associated
imbrication and thrust faults, and involving some of the
9ranitoids as well as the 9reenstones in places. At this meeting

we have heard talk of cannibalistic nappes, stacking, sutures,
and also klippe. Subsequent deformation, where present, is
generally upright with a strong associated penetrative cleavage.
The presented results of finite strain studies, both within and
external to the 9reenstones, clearly indicate that such systematic
studies orovide interesting and elegant interpretations.

This meeting has clearly demonstrated that our resolution

of the structure of 9reenstone belts has been improved because
of the use of "high-resolution field geology": extensive,
greenstone belt-scale, detailed mapping at 1:10,000 to 1:25,000
scale; Phanerozoic experience; quantitative finite strain
mapping; careful use of structural facing--Shackleton's rule;
more care with the use of field terms for lithologies; improved
sedimentological and volcanological input; closely monitored
geochronology and geochemistry; and recognition of tectonic
contacts and tectonites.

The evidence for tectonic thickening and stratigraphic
complication, despite the absence of fossils, is convincing. Fine
tuning this, in order to unravel stratigraphic sequence, will be
difficult and may be impossible in places. The use of detailed



sedimentological analysis and experimental igneous petrology
could provide partial solutions to the fossil problem.

Our structural knowledge is essentially surflcial, except in
rare instances of exceptional vertical exposure, as in parts of
Barberton. Many questions about the deeper structure of
greenstone belts remain, with some geophysical studies
providing interesting local models. The application of detailed
shallow seismic reflection studies, with appropriate laboratory
calibration of lithologies, may help detail some of this structure

by defining the position and attitude of definable greenstone
belt-scale contacts and discontinuities.

Further refinement of our knowledge of the structure of
greenstone belts, and of their relationships to the granitoids,
requires an integrated approach, in particular with much
neglected metamorphic studies of textures and physical

conditions; mineralization and alteration studies regarding the
source, composition, and history of hydrothermal fluids; as well

as a greater input of detailed sedimentology and precision
geochronology.

Structural studies notable for their absence from the meeting
were:

kinematic studies, especially of slides and faults;
incremental strain (path) studies;
speedometer (strain-rate) studies; and
the use of balanced cross-sections and palinspastic
reconstructions.

The conveners have told me that I have a viewpoint to
express. It is this: The evidence for the geological processes
operative in the formation of greenstone belts is essentially
structural. They are belts (as opposed to basins, rifts, bananas,
platforms, or pumpkins) by virtue of their tectonic history. They
owe their formation to deformation and deformation processes.
If we are going to understand their origins, we must first
understand their geometry and their kinematic evolution. Until

we do that, we are simply pushing a viewpoint. Pushing a
viewpoint is dangerous--it's like pushing a hearse; it invariably
leads to dead ends. It is the interesting and stimulating, even
controversial, interpretation that is more likely to lead to a
reasonable answer. This does not mean having to be outrageous.

I remind you of what Tyndale-Biscoe (1949, p. 48) said of
the Early Archean succession at Selukwe (Zimbabwe) when
his mapping and observations of both sedimentary younging
structures and conglomerate compositions (sedimentology)
indicated an inverted and tectonic succession: "It is for this

reason, mainly that the 'nappe' structure is invoked to explain
the situation."

Subsequent more extensive studies in the same area led
Stowe (1968) to write:

"The AUochthonousNappe"

"The inverted Scluke Schist Belt slices, together with the
schist and gneiss wedges in the Southern Gneissic Complex,
constitute the lower imbricated limb of a large recumbent
nappe fold. This rests on and was thrust overa stable gneissic
basement represented by the Eastern and Western Gneissic
Complexes. The contact between this basement and the
schist cover is a wide shear zone, except in the east where
the basement was reactivated and granite intruded the
SChist."

35

How could he be talking about the Archean? Surely this
man was at the wrong conference! A member of the audience
is quoted (Antrobus, 1968) as saying: "These new ideas of

thrustingand nappes are startling."
Another, perhaps with acute hyperbole, remarked: "There

is very little evidence of nappes at Barberton."

I wonder if there were any speakers at the wrong conference
this time?
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An Ore Deposits Viewpoint
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A significant proportion of the contributions to the workshop

stressed the perceived similarities between lithological
successions, nomenclature, structural styles, and tectonic
evolution affecting Archean supracrustal rocks and their
younger counterparts. Several broad generalizations can be
made concerning the differences and similarities between

Archean and Phanerozoic supracrustal assemblages that place
constraints on the tectonic processes resulting in formation of
greenstone belts.

Volcanism. Archean volcanism is predominantly bimodal in
nature (basalt-rhyolite), suhalkaline, and suhaqueous. There is
a marked paucity of extrusive rocks whose volcanological,

petrographical, and geochemical characteristics resemble
orogenic andesites, although the term "calc-alkaline" is used
frequently. The presence of extrusive ultramagnesium flows
(greater than 20 wt% MgO) is unique to the Archean, although
some magnesium picrites from Disko and Gorgona have some
similarities.

Sedimentation. Archean sedimentary rocks are dominated
by deep water volcaniclastic detritus, conveniently grouped as
turbidites. Pettijohn's observation of the apparent lack of mature
orthoquartzites and sedimentary carbonate rocks is still valid.
The presence of vast quantities of handed iron-rich sedimentary
rock of Archean age still has to be explained.

Metamorphism. In recent years, it has become apparent that
vast regions of Archean supracrustal rocks (e.g., the Abitibi
Belt of Canada) exhibit mineral assemblages characteristic of
subgreenschist facies (Barrovian) metamorphism. It is of interest
to note that metamorphic mineral assemblages found adjacent
to some auriferous deposits are not consistent with
metamorphic rank established by mineral assemblages on a

regional basis. For example, felsic intrusions of overall

granodioritic composition in the Timmins-Porcupine gold camp
contain mineral assemblages ranging from quartz-albite-
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paragonite-talc-stilpnomelane-chlorite-hematiteto assemblages
withquartz-paragonite/muscovite-chlorite-calcite-magnetite-
chloritoid,suggestinga progression of alteration by oxidizing
sodic fluids through to reduced alkali-depleted fluids.

By way of an introduction to the following comments, it may
be appropriate to note that the majority of published and on-
going studies of Archean geology have been carried out in areas
spatially associated with ore deposits or in regions of anomalous
metallic mineralization due to exposure, access, and the
availability of a data base. This observation may have some
important consequences regarding the applicability of regional
syntheses. An ore deposit is the culmination of a fortunate
sequence of natural processes that have concentrated a suite
of elements by factors ranging from approximately 500× (Cu-
Zn) to 5000× (Au) their average crustal abundances. The
requisite fluid budgets and hydrothermal regimes responsible
for these concentrations will have profound geochemical affects
over areas several orders of magnitude greater than those of
the deposits themselves. An ore deposit, by its nature, is
genetically associated with one or several anomalies or
complexities: stratigraphic, structural, mineralogical, geochem-
ical, or geophysical-emphasis is placed on the term "anomaly,"
sinc_ geological monotony is anathema to mineral exploration.
The point is that caution must be exercised in extrapolating
observations made in "anomalous" areas to a synthesis involving
much larger scales.

Little mention was made concerning fluid budgets and the
scale of hydrothermal alteration in the Archean. As a first
approximation, the masses of water contained in the Earth's
three major reservoirs (the oceans, on and in the crust, and
in the mantle) are approximately equal. Transference of water
between these reservoirs over time may have some profound
geochemical and isotopic consequences. Furthermore, the scale
of hydrothermal regimes associated with igneous activity may
not be appreciated, since the convective cooling of subaqeous
igneous rocks may involve fluid volumes equal to magma
volumes within several kilometers of the surface.

The study of Archean ore deposits has shown that
rudimentary stratigraphy of greenstone belts can be recon-
structed using the ore deposits. Greenstone belts containing
volcanogenic massive sulphide deposits and stratabound gold
deposits in talc-carbonate units are dominated by ultramafic
rocks usually overlain by thin felsic and thick sedimentary rock
sequences. Greenstone belts containing volcanogenic massive
sulphide deposits are dominated by thick bimodal volcanic
assemblages flanked by thick sequences of volcaniclastic
sedimentary rock. The association of ore to specific litbofacies
of greenstone belts reflects the broad tectonic environment
active during ore formation. Also, the occurrence of gold but
no base metal massive sulphide ore at Barberton, South Africa
vs. occurrence of base metal massive sulphide but no gold
ore at Manitouwadge, Ontario reflects fundamentally different

processes responsible for the formation of these two greenstone
belts. Economic geologists have long recognized the variability
between greenstone belts and it would serve a useful purpose
to better define and classify these belts according to their
dominant rock types, stratigraphic sequence, structural style,

and contained ore deposits.

The most striking difference in metaUogeny between the
Archean and younger times is the astounding accumulation
of gold at the Earth's surface between 3.0 and 2.6 Ga. Nickel
sulphide deposits and Algoma-type iron formations are also
more common to Archean rocks than their younger counter-

parts. Conversely, there are few notable examples of porphyry
Cu-Mo deposits of Archean age, nor of Sn-granites, redbed
Cu, Hg, or Mississippi Valley-type Pb-Zn deposits. Also, large
oxide-facies banded iron formations of the Superior-type do
not occur until Proterozoic time. Perhaps the most striking
similarity in ore-deposit geology throughout time is the presence

of volcanogenic massive sulphide Cu-Au deposits, which are
broadly similar in most aspects, whether of Archean age or
presently forming on the ocean floor. These metallogenic
changes through time must be adequately explained by the
tectonic evolution of greenstone belts through to Phanerozoic
plate tectonics.

A number of participants referred to the primacy of field
geology and field mapping in studies of the Archean. Maps
are the lifeblood of mineral exploration. A few broad
generalizations are offered: In mineral exploration maps are
prepared rapidly, in a pragmatic fashion and using remote
sensing as a primary source of information (particularly in
regions of northern Canada where outcrop may average five
percent). It may be said that the primary concern of map
generation is consistency above accuracy and the recognition
of patterns and complexities. An experienced mapper can cover
approximately I square kilometer per week at a scale of 1:5000.
With revisions at regular intervals as a result of joint ventures,

restaking, compilations, and new ideas, the data base on file
with many exploration companies in Canada is not only

invaluable, but is also accessible.
A valid point to be made concerns the application of remote

sensing to the rapid, accurate generation of maps of all scales.
The availability and reasonable expense of airborne high-

resolution cesium-vapour magnetometers and gradiometers,
INPUT and airborne electromagnetic systems for scales greater
than, say 1:20,000 and the reasonable cost of ground geophysics
(for scales less than 1:5000, for example) suggests that this
should be considered as a valid academic pursuit. Several

thousand square kilometres could be flown with high-resolution
magnetometer/gradiometer and electromagnetic systems for
the cost of a moderate piece of analytical equipment. For smaller
scales, where the emphasis is on structural complexities, the
cutting of grid lines followed by ground geophysics could be
done for a cost less than $8000 (1985) per square kilometer
(and much less if done "in-house" through an applied geophysics

program in a university).
The nature of Archean ore deposits was not emphasized

during the workshop; however, much understanding of
greenstone belts has come from study of ore deposits and their
host rocks and the continuing exploitation of these ores provides
significant impetus to further study and understand greenstone
belts. Ore deposits in Phanerozoic and younger terrane exhibit
typifying metallogenic signatures dependent on the geologic
province in which they occur and the tectonic process that
was causative to their formation. Similarly, Archean ore deposits
provide a powerful tool to help unravel Archean tectonic
evolution.
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A Geophysical V'_wpoint

L. Losier, Department of Geological Sciences, McGill
University, 3450 University St., Montreal, Canada, H3A 2A7

Little emphasis was placed at the workshop on the
geophysical aspects of the study of Archean greenstone belts.

This may reflect the common use of geophysics as an exploration
tool but less common use as a research tool.

The focus of geophysical investigations has been to examine
geometries and contact relationships and to look at the broader
and deeper aspects of structure and interterrane relationships.
Geophysical interpretations, primarily gravity models,
consistently indicate that greenstones are restricted to the
uppermost 10 km or so of crust. Gravity models suggest that
granitic elements are similarly restricted. Seismic evidence
demonstrates that steeply-dipping structure, which is
characteristic of the belts at the surface, is not present in the
underlying crust, which appears to have a simple layered

structure. Geophysical evidence indicates that the boundaries
between greenstone-granite and adjacent metasedimentary
terranes are marked by large-scale crustal discontinuities. Within
greenstone belts, measured stratigraphic thicknesses are often
twice or more the vertical thickness determined from gravity
me,Jelling. This discre_y may be explained if stratigraphy
is repeated by thrust faulting and/or iistric normal faulting.
Where repetition is not a factor the gravity evidence points
to the absence of the root zones of greenstone belts.

Geophysical methods are a complement to geological studies
and are of particular use in areas of poor outcrop. As lithological
units can have their own physical, electrical, and magnetic
properties, it is possible to use geophysical methods also as
a mapping tool. Their primary strength, however, lies in the
information obtainableon the subsurfacestructures, particularly
if geophysical models are constrained by integrating several
methods.

Integrated geological and geophysical studies wig undoubtedly
provide considerable useful information on the nature of

_eenstone belts and help constrain models of origin and
evolution. Given the increasingly available computing capacity
to manipulate multiple data sets and sophisticated modelling
algorithms, geophysics will play an important role in studies
of greenstone belts and Archean geologic evolution in genera].

A Thermal Viewpoint

Paul Morgan, Department of Geosciences, Purdue University,
W. Lafayette, IN 47907

Two fundamental questions are raised when the thermal

aspects of the tectonic evolution of greenstone belts are
considered:(1) Was the average temperature of the Earth hotter

in the Archean when most greenstone belts were formed? (2)
Given that the modern lithosphere is laterally thermally
heterogeneous, how relevant is the average temperature of the
Earth to the local conditions of greenstone belt formation and
preservation?

Intuitive logic suggeststhat the Earth had a maximum average
temperature shortly after formation due to energy released by

the accretion process, core segregation, and possibly short-
lived unstable isotopes. Estimates of the global heat budget

generally agree that of the order of 20%of modern global heat
flowis derived from secular cooling of the Earth, the remainder
coming from the decay of unstable isotopesof uranium, thorium,
and potassium. If these estimates are correct, then the Earth
had a higher heat loss and a higher average temperature during
the Archean. If all modern heat flow is derived from internal

isotopicheat generation, however, even though the rate of this
heat generation must have been greater in the past, it is not
required that the average temperature of the Earth was hotter.
Rapid convection in the early Earth driven by heat of formation
could have lost heat at a rate greater than it was produced
by slow isotopic heat generation, resulting in a "cool" Earth
prior to the establishment of the modern thermal regime of

the Earth dominated by internal heat generation. Lunar crustal
evolution suggeststwo phases of crustal _tism, the early
generation of an anorthosite crust followed by the "Archean"
basaltic magmatism of the maria, perhaps representing a second
peak in lunar temperatures due to radiogenic heating. Although

the two-phase thermal evolution of the Earth may be considered
unlikely, it must be remembered that with the present
constraints on the modern thermal budget of the Earth, it cannot
be assumed a pr/or/ that the Earth has cooled steadily
throughout its 4.6 Ga history, although this assumption may
be a useful working hypothesis.

More directly relevant to the question of the tectonic evolution
of greenstone belts is the question %Vas the Archean upper
mantle hotter than the modern mantie_' It is probably a
reasonable assumption that the average temperature of the
Earth was hotter in the Archean than today, and that the global
heat loss was greater, but again this does not require a hotter

upper mantle if convective heat transfer was very efficient in
the upper mantle. As the effective viscosities of mantle rocks

are stronglydependent upon temperature, however, it is unlikely
that upper mantle temperatures were significantlycooler in the
Archean than today or convection would have been lessefficient.
By analogy with the Moon, up to about 100 Ma prior to the
preservation of the oldest terrestrial rocks (3.8 Ga), Earth was
subjectedto a late global phase of impact tectonics (late heavy
bombardment). If this impact activity had a significant heating
effect on the outermost shellof the Earth, the time gap between
the last phase of major impact activity on Earth and the
preservation of the oldest rocks represents the time required
to lose the impact heat from the Earth down to a depth of
theorder of 150kin. This scenariosuggeststhat the pre-Archean
upper mantle may have been rapidly cooling from an impact-
heated phase.

These problemsofthe thermalevolutionofthe earlyEarth

and hlnplicationsfor upper mantle temperatureswere not

discussedindetailatthe workshop,but are relevanttoearly

crustalgenesisand greenstonebeltevolution.

Ifitisassumed that globalheat lossand upper mantle

temperaturesinthe Archean were higherthan the modern

values,the questionoflateralthermalheterogeneitymust still

be addressed with respect to the tectonicevolutionof

greenstonebelts.Severalmechanisms havebeen suggestedfor
themechanism of additionalheatlossinthe Archean such

asfaster/moresea-floorspreading,greaterconductiveheatloss,
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and more intraplate (hot spot) heat loss. It appears that finding
mechanisms for the additional heat loss is not a problem, but
finding constraints for these mechanisms in the scant and often
highly metamorphosed Archean rock record is difficult. Of
fundamental importance to this problem is the question "How
do Archean rock assemblages (including greenstone belts) differ
from modern assemblages?" If there are no significant
differences, then it is a reasonable assumption that the Archean
tectonic processes differed only in rate from modem tectonic
processes. If there are significant differences, however, the

modification of tectonic processes by a hotter thermal regime
must be considered (e.g., see abstract by Abbott and Hoffman).

Observational constraints on the Archean thermal regime

are limited at present. Metamorphic gradients give valuable
information about local thermal regimes during tectonic and
magmatic activity, but must be treated with great caution in

interpreting regional and upper mantle thermal conditions (e.g.,
see abstract by Morgan). The occurrence of komatiites in

greenstone belts suggests high mantle temperatures for the
generation of these magmas. However, discussion at the
workshop indicates that more experimental studies are
necessary to constrain the pressure and temperature conditions

of the origin of these magmas before they can be used to tightly
constrain Archean mantle temperatures. The question of lateral
thermal heterogeneity must also be addressed in assessing the
thermal implications of komatiitic magrnatism--do the magmas
indicate globally higher upper mantle temperatures or merely
local hot spots in the mantle or vigorous eruption dynamics?

In contrast to the high mantle temperatures suggested by
komatiites, diamonds of Archean age suggest that at least locally
the lithosphere was cool and thick (similar to modem shield
lithosphere). Our understanding of the thermal structure of
modem shields (e.g., see abstract by Drury) does not preclude
the local existence of thick lithosphere over a hot asthenosphere
(e.g., see abstract by Morgan). Thick lithosphere may be
preserved by balancing its basal temperature with the
asthenosphere temperature by internal heat generation in a
quasistable state: As the internal heat generation and/or
asthenosphere temperature changes with time, minor changes
in lithosphefic thickness and/or metasomatic addition of more

heat-producing isotopes may be required to maintain stability.
Thus locally cold, thick Archean continental lithosphere may
be compatible with hot mantle. However, if significant lateral
variations in mantle temperature exist, cold, thick lithosphere
may simply be developed over local cold spots (downwelling
convection limbs) in the mantle with komatiites developed in
the rising plumes. Furtb., constraints on the longevity of thick
lithosphere are required to resolve this problem.

Finally, in terms of global thermal conditions, great caution
must be exercised in interpreting the remaining pieces of
Archean crust as being fully representative of all Archean crust.
Modern tectonic processes produce a great variety of
sedimentary, igneous, and metamorphic terranes, and even
today there is strong circumstantial evidence that some terranes
are repeatedly reactivated while others are relatively stable. By
analogy, not all Archean terranes are likely to have been
uniformly preserved; in fact, the lack of high heat generation
(high U, Th, K) terranes preserved in the Archean record
suggests that these terranes may have been selectively

reworked. A search must be made in younger terranes for
reworked Archean terranes to attempt to piece together the
full extent and diversity of Archean greenstone belts. Only when
reasonable confidence is gained that the sample under study
is not the result of selective preservation can the full implications
of the thermal aspects of the tectonic evolution of greenstone
belts be realized in terms of global tectonics.

A Sedimentological Viewpoint

E. G. Nisbet, Department of Geological Sciences, University
of Saskatchewan, Saskatoon, S7N OWO, Canada

The study of Archean sediments gives direct access towards
an understanding of Archean surface environments, the nature
of the Archean surface, with its volcanoes, mountains, and
basins, the evolution of the continental masses, and the early
history of life.

At the workshop there was strong controversy marking a
conflict of sedimentological and structural interpretations; and
there was dispute among sedimentologists in attempts to probe

deeply into the nature of the Archean surface. This account
is a short summary of the workshop and an impression of the
discussions.

The Tectonic Setting of Greenstone Belts

Rifting models. One of the most important applications of
sedimentolo_ to Archean rocks is in the study of the tectonic
environment in which greenstone belts originated. Every
greenstone belt is different, but many (though not all) appear
to have originated in some sort of rifting environment. Facies
analysis is helpful in understanding what happened. Some years
ago, most sedimentary successions in greenstone belts were
thought of as having been deposited in "basins," a very general
term. More recently rifting models after McKenzie (1978) have
been applied by McKenzie et al. (1980), Bickle and Eriksson
(1982), and others to greenstone belts (Fig. 2). The model
predicts specific sequences of sedimentary facies associations
and volcanism during the extension of continental crust, and
in many greenstone belts the "stratigraphic" succession appears
to fit. Listric normal faulting is important in rifts, and has been
suggested by some Archean geologists (including the present
author) as one possible way out of the embarrassment caused
by the exceedingly great apparent thicknesses of many Archean
stratigraphic successions.

At the workshop, rifting models of various sorts were
presented. Skulski et al., to cite one example, suggested that

stretching by a factor of about 1.5:1 took place in La Grands
River greenstone belt, Quebec, during a "classical" continental
stretching event. Others saw rifting events in a variety of ways,
and many authors discussed "pull-apart" basins or drew
analogies with diverse modern settings. There was also
considerable discussion of the contrast between "platform" and
"rift" settings, after Groves and Batt (1984): It should be pointed
out that "platforms" as used in this sense bear little resemblance
to standard concepts of young sedimentary platforms. Most
attendents at the workshop concurred that rifting might have
been important in early stages of greenstone belt evolution but
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the edge of a late Archean greenstone belt at Atikokan in
Northwest Ontario, comprises a suite of clastics, carbonates,
and volcanic rocks laid d6wn with clearly exposed unconformity
on older basement (see abstract by Wilks and Nisbet)_

However, all is not necessarilyso simple. Hoffman discussed
the significance of the Point Lake unconformity in the Slave
province, Canada. He pointed out that the unconformity may
not be a simple record of the initiation of subsidence in a basin
or rift. Instead, it is possible that the conglomerate above the
unconformity is the result of erosion during thrusting, as part
of the sequence of events during the formation of a complex
trench-arc system (see abstract by Lamb and Paris). In
Hoffman's interpretation the unconformable relationship
between volcanics and clastics represents a trench inner-slope
setting, while subconformable relationships represent trench
outer-slope settings. The greenstone belts of the Slave Province

are thus seen as synformal remnants of a formerly continuous
complex of tectonically accreted oceanic objects. Detailed
sedimentological and structural fieldwork are likely to provide
critical tests of this model.

Global Questions and Solutions Reuealed Through Sediments

Continental growth. Underlying many of the workshop
discussions wasthe more general questionof how the continents
grew, broke up, and aggregated again. There is clear evidence
from several areas that very shallow-water sediments and
evaporites are preserved among very old rocks [e.g., in the
Pilbara (see abstract by/_owe and Byerly); in the Pongola belt
(see abstract by Hunter et aL); and in Belingwe (Biclde et aL,
1975)] and that they apparently today overlie a normal thickness
of continental crust. Since the thickness of continental crust

depends on the depth of the oceans, this would suggest either
that Archean oceans were--at least roughly--as deep as

modem oceans or that substantial underplating of the continents
has taken place in all areas where shallow water successions
now overlie normal thickness of continental crust. On balance,

there is an intuition (though not proof) that massive underplating
of apparently stable cratons has not occurred: There is thus
an opinion that the Archean oceans were deep. This idea is
generally supported for a variety of reasons, not the least
important being that it is difficult to see where the Earth's water
would be stored if it was not at the surface.

The geochemistry of sediments has also played a role in the
understanding of continental growth in the Archean: Whereas
the mean age of the continents is between 2.0-2.5 Ga, it is
still uncertain as to how much reprocessing and recycling of
continental material has there been since the earliest recorded

granitic rocks (ca. 3.8 Ga). Taylor and McLennan (1985) have
used REE evidence from Archean sediments to suggest that
a secular change took place around 2.7 Ga, and that in the
early Archean continental volume (and hence area, if thickness
has stayed moderately constant) was small. They have based
their arguments on the REE geochemistry of fine-grained clastic
sediments because these can be regarded as being represen-
tative of the bulk-composition of the upper crust. The Taylor/
McLennan data consistently show negative anomalies in post-

Archean samples, while Archean samples do not display Eu
anomalies in their REE patterns. If the suite of sedimentary

rocks chosen is comprehensive, this would imply that sometime
in the late Archean and early Proterozoic there was a major

change in the nature of the continental crest, when a great
volume of granitic material was freshly added to the continents
from the mantle and then unroofed, to generate the Eu

anomalies. Perhaps related to this postulated event is the often
made observation that granites (sensu-stricto) are uncommon
in the early Archean record: Most Archean granitoids are
tonalitic and some field geologists are of the opinion, admittedly
qualitative, that granites proper only become abundant in the
Proterozoic and Phanerozoic.

At the workshop Naqvi (see abstract in this volume) presented
very interesting results from the Chitradurga belt (2.6 Ga) in
India. This belt contains a variety of greywackes and shales,
most of which have been derived from surrounding tonalitic

gneisses and also from K-rich granites. Rare earth element
patterns in the greywackes generally show negative Eu
anomalies. Perhaps the Chitradurga sediments represent a local
and special case, but there is a strong suspicion that more
general sampling of Archean shales will show widespread
negative anomalies, and that there is not strong evidence in
favor of a massive rap'gl change in the nature of the crust in
the late Archean. Indeed, many sedimentoiogists hold the
prejudice (admittedly unsubstantiated) that the abundance and
distribution of the Archean cratons is such as would be

expected, allowing for reworking, from a steady state model
of continental volume (cf. Armstrong, 1981). Perhaps there was
indeed a slow change in the composition of granitoid melts,
as the average temperature of the mantle cooled, but more
evidence is needed.

Archean life and the oxidation state of the early Earth. The
geological record of life is mostly within the sediments of
greenstone belts. There is excellent evidence for 2.7 Ga life
in the stromatolites that are so abundant in the Late Archean

(e.g., Belingwe, Fortescue, Steep Rock). In Barberton (de Wit
eta/., 1982; Byerly eta/., 1986) and in the Pilbara (Buick et
aL, 1981) there is now a small body of good evidence from
stromatolites that shows that life existed by 3.6 Ga ago. Evidence
from the analysis of RNA in modern bacteria and archaebacteria
would suggest that both groups, including not only the ancestors
of the cyanobacterla thought to have built stromatolites, but
also the ancestors of archaebacteria now extant around mid-

ocean ridge and terrestrial hydrothermal systems, are
exceedingly old. Quite possibly the photosynthetic bacterial
communities existing in shallow waters and now recorded in
stromatolites represented only a part of the Archean living
community: An equally important population may have
flourished in and around Archean volcanoes, exploiting both
ocean ridge and calc-alkaline heat sources. There may also

have been an active population exploiting the photic zone in
the oceans. Such a population is not recorded in the geological
record, but it is reasonable to suppose that it existed, in much
the same way that modern procaryote populations in lakes
display an exquisitely stratified depth control. Living organisms
breed explosively until all available resources are utilized, and
it is thus reasonable to suppose that if life had managed to
occupy shallow-water, shallow-levels in the oceans and also
hydrothermal systems, then it would have done so rapidly in



everyavailableplace.Thepopulationof organisms may not
have been diverse, but it would have been as dense as the
sunlight, chemical supplies, and lack of predators allowed.

Finally, from the sedimentolocjicalrecord a reasonable, though
not conclusive, case can now be made for the proposal that

the atmosphere has been at least weakly o"xi_Jizingfor most
of the geological record. Sulphate evaporites in 3.6 Ga
greenstones in the Pilbara and Barbertun (Lowe and Byerly),
and Nondweni (Hunter eta/., described at the workshop) lend
some support to this notion.
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A Petrologic V'mWlmint

Peter J. Wyllie, Geological and Planetary Sciences, California
Institute of Technoioc_, Pasadena, CA 91125

Instead of attempting to summarize what you all heard during
the past two days, I will build on some of the topics and issues
discussed to outline an approach to understanding the
progressive development of continental crust in the Archean
greenstone belts.

What interests petrologists is the relationship between the
observed magmatic rocks, the inferred source rocks from which
magmas are derived, and the processes inbetween. The possible
processes are numerous, and they obscure the links between
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product and source. The processes are physical, and it is the

physics of solid-melt-vapor systems that controls the chemistry
of the magmas, and of the igneous rocks perserved in the
geological record.

Using the Barberton Mountain Land as an example, the most
prominent igneousrocks in early Archean t_ include (1)
komatiites, (2) tholeiites, (3) tonalites and trondhjem/tes, grey
gneisses, (4) potassic granites, pink gneisses, and (5) rare
syenites. In some Archean terranes monzodiorites and syenites
appear to correspond to the igneous stage represented generally
by the grey tonalite and trondhjemite gneisses. Dacites and
rhyolites may be abundant, presumably the surface expression
of large magma chambers.

The possible source rocks are: (1) peridotite and eclogite
of the mantle, (2) komafiites and tholeiites of the protocrust,
possibly hydrated with formation of serpentine, talc, chlorite,
epidote, and amphibole, (3) locally, garnet-amphiholite or
amphihole-eclogite from oceanic crust thickened, foundered,
or subducted, (4) tonalite gneiss of new continental'crust, and
(5) metamorphosed sediments buried by compressive tectonics,
or subduction.

These observed magmatic products and inferred sources for

the Archean are found in petrographic associations throughout
geological history. The materials are the same, although

additional materials become more important in post-Archean
times. T'neone distinctive feature of the Archean is .............
of abundant komatiites, and this feature alone is sufficient to

inform us that the asthenosphere was, at least locally, hotter
by several hundred degrees than in later history. Two of the

problems in komatiite petrogenesis are (1) attaining high enough
temperatures, and (2) retaining the liquid at depth with its host
peridotite for the relatively high percentage of melting required
to generate the low-viscosity, high-MgO liquids. Because the
thermal structure at depth is so fundamental for igneous
processes, I maintain that the komatiites merit another round

of detailed investigation, starting in the field, with petrography,
mineralogy,and geochemistry; and with a major effort to S_ip
off the effects of obvious and more subtle alteration, with
experimental petrology of kornatiites and peridotites to provide
the calibration for the geophysical and thermal modelling.

More vigorous convection of the mantle in the Archean would

probably be concentrated in plumes, and the existence of
komatiitessuggeststhat temperatures in these plumesmay have
been at least a couple of hundred degrees higher than in later
regions of upwelling. The idea that pools of komatiite magma
could be formed in the mantle in regions of local upweiling
is very attractive, and its geophysical and petrological
_nplicafions merit more attention. There is now persuasive,
although not definitive, evidence that the density of komatiite
liquids becomes higher than that of peridotite at a depth of
200-300 kin. If so, komatiite magma formed at greater depths
could not rise through this level and would in contrast have
a tendency to sink. The conditions for intermittent release of

komatiite from mantle magma chambers are speculative, but
the tectonic conditions must involve tension. The reports of
sheeted dikes in the Archean are probably more important
as indicators of tension than as indicators of the possible
presence of ophiolites that could be similar to modem oceanic
crust.
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Fig. 3. Archean magmas: Possible and impossible sources. Based on major elements, mineralogy, and phase relations. Trace

element and isotope geochemistry must also be considered.

If komatiites were derived from deep magma chambers, then
the tholeiites can be interpreted as having been formed from
a different source, lithospheric mantle at a shallower level, with
heat provided by the deeper mantle plumes.

There is evidence for the storage of magmas of different
composition in chambers at different depths. Calderas and
associated volcanic activity confirm the presence of shallow
silicic magma chambers. The widespread distribution of large
anorthite crysts in many basaltic rocks is strong evidence for
large, long-duration basaltic magma chambers at greater depths.
In addition, large komatiite magma chambers may have existed
in the upper mantle. There has even been discussion of a magma
ocean, capped by lithosphere, but I prefer a picture with the
chambers localized in regions of strong mantle upwelling.

Evidence from experimental petrology denies the prospect
of deriving primary granitic magmas from normal mantle

peridotite, and geochemical signatures leading to this conclusion
must be satisfied by partial melting of young material derivative
from mantle, such as basic rocks or greywackes. Tonalites and
trondhjemites are derived not from the mantle, but from basic
protocrust. For these magmas, we need additional experimental
phase equitbrium data to define the ranges of pressure,
temperature, and water content for their derivation. The

structures of rocks in greenstone belts, leading to inferences
about tectonic environment and process, need to be interpreted

in terms of possible depths of formation and emplacement, for
correlation with the experimental phase equilibrium data on
the magmas. The coordination of these two approaches should

lead to a clearer understanding of whether the granitoid magmas
are formed as a result of crustal thickening, sinking of blocks

of the crust, or an early version of subduction (presumably
on smaller scales).

The general approach of using experimental petrology to
unravel possible relationships between the observed magmatic
rocks and the inferred source rocks is to follow the geochemists

in "forward" and "inverse" approaches, and to use the phase
diagrams to place major element constraints on the magic of
minor "element and isotope algebra. This approach neglects the
very influential "processes" between source and near-surface
products, but it provides a framework for starting to unravel
the petrogenesis.

In the forward approach, the possible source rocks are
subjected in the laboratory to variation in P, T, H20 content
and other variables, which provides specific information about
the compositions of melts and coexisting minerals generated
in the rocks under any conditions investigated. This sounds

easy, but there are many experimental difficulties.
In the inverse approach, the near-liquidus phase relationships

of an igneous product are determined through a range of P,
T, and other variables such as H20 content; the minerals on
the liquidus of the particular composition must then correspond
(in type and composition) to the residual minerals in a possible
source rock at the specified conditions of pressure, temperature,
water content, or other defined variables.

Much effort has been expended in these two approaches
for peridotite-basalt, and less for peridotite-komatiite.
Incomplete data are available for combinations of the series
gabbro-tonalite-trondhjemite-graniteH20. On the basis of the
available data, Fig. 3 is offered as a matrix of possible and
impossible magmas from possible sources in the Archean. !



have assumed that in the Archean, deep subduction of cool

oceanic lithosphere does not occur. I adopt the ideaof a basic
protocrust generated where tension permits uprise of magmas
from mantle sources, followed by the formation of mini-
continents, their migration and collision, with foundering of parts
of the colliding continental nuclei, and local shallow subduction
into an upper mantle hotter than it is today.

The sequenceof igneousproducts in the Barberton Mountain
Land, komatiites and basalt, tonalites and trondhjemites,
granites, and finally syenites, also constitute possible magmatic
sources. The sequential development of each magmatic product
by partial fusion of the preceding igneous phase is consistent
with major element phase relations. This interpretation appears

to fit the physical conditions reasonably well, and appears to
be reconcilable with much trace element and isotope
geochemistry. Refinement of the structural geology and
correlation with phase equilibrium results of experimental
petrology/might lead to a better definition of the extent of vertical
movements in the Archean, and with the temperatures at various
depths associated with these structural movements.
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HOT SPOT ABUNDANCE, RIDGE SUBDUCTION AND

THE EVOLUTION OF GREENSTONE BELTS

Dallas Abbott and Sarah Hoffman

College of Oceanography

Oregon State University

Corvallis, Oregon 97331

A number of plate tectonic hypotheses have been proposed to explain the

origin of Archaean and Phanerozoic greenstone/ophiolite terranes. In these

models, ophiolites or greenstone belts represent the remnants of one or more

of the following: island arcs (1,2), rifted continental margins (3), oceanic

crustal sections (1,4), and hot spot volcanic products (1,3,5). If plate

tectonics has been active since the creation of the earth, it is logical to

suppose that the same types of tectonic processes which form present day

ophiolites also formed Archaean greenstone belts. However, the relative im-

portance of the various tectonic processes may well have been different.

The Archaean earth is postulated to have had greater internal heat pro-

duction and consequently a younger maximum age of the oceanic lithosphere at

subduction (6,7). One of the consequences of a greater proportion of sub-

duction of young oceanic lithosphere in the Archaean is that ridge subduction

would have been more co_mmon (7). The most common type of ridge subduction

in the Archaean would have been that where oceanic lithosphere comprised both

the overriding and subducting plate. The only present day example of this

type of subduction is the subducting ridge in the Woodlark basin. This ridge

crest has several geochemical anomalies: basalts with an island arc signature,

and a dacite volcano on the ridge crest (8,9). The island arc component of

the basalts has two proposed origins: contamination by an older subducting

plate due to polarity reversal of the arc (9) and fluid contamination from

the base of the subducting plate (i0). Plate reorganization and ridge sub-

duction are both postulated to have been more abundant in the Archaean (7).

Regardless of the mechanism by which the arc-like component is generated,

Archaean oceanic crust emplaced on land would have been much more likely to

have an arc-like composition. Similarly, the dacite volcano observed on the

Woodlark basin ridge crest could also have counterparts in Archaean green-

stone belts.

Other aspects of the Woodlark basin subduction system may also have re-

levance for Archaean greenstone belts. The New Georgia island arc, which is

being formed by subduction of the oceanic crust of the Woodlark basin (Figure

i), is composed of overlapping volcanoes, located 4-70 km above the Benioff

zone (11,12). The New Georgia arc is quite different from a 'typical'

Phanerozoic arc, e.g. the Marianas arc (Figure 2). In the Marianas, the

volcanoes are spaced 50-100 km apart and sit 125-150 km above the Benioff

zone (13,14). The island arc volcanics of the New Georgia arc also have some

unusual characteristics. One island is a picritic volcano, thought to be

the direct result of the ridge subduction process (8). If a higher percent-

age of Archaean island arcs were like the New Georgia islands, individual

volcanoes would possess overlapping edifices and picritic volcanoes would

occasionally occur. The overlapping volcanic edifices would increase the

thickness of layer 2 (the pillow basalt layer) and would increase the pro-

bability of multiple phases of hydrothermal activity. Consequently, the re-

lative abundance of Archaean ore deposits could be due to the greater in-

cidence of New Georgia-like island arcs.
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Another probable consequence of greater internal heat production in the

Archaean would have been a greater abundance of hot spot activity. For ex-

ample, in the Phanerozoic, global ridge volume in the Cretaceous is thought

to have increased and to have caused the Cretaceous sea-level high. This in-

crease in the global sea floor creation rate may have coincided with an in-

crease in hot spot activity (15). If increases in hot spot activity do

coincide with increases in sea floor creation rate, hot spot activity must

have been much more abundant in the Archaean. At present, 10% of all sea

floor volcanism is estimated to result from hot spot activity (16). In the

Archaean, it is likely that an even greater percentage of sea floor magma-

tism would have been hot spot generated.

Greater hot spot magmatism in the Archaean would have increased the in-

cidence of bouyant subduction. Bouyant subduction can be a result of sub-

duction of young oceanic crust or of older oceanic crust with a thickened

crustal section (7). Much of the oceanic crust which subducts bouyantly has

no volcanism or reduced volcanism. This reduction in volcanic activity as a

result of bouyant subduction is most common if the overlying plate has a

thickened crustal section. Consequently, an increase in hot spot activity

in the Archaean could have decreased the percentage of subducting plates

causing magmatic activity in the overriding plate, particularly when the

overriding plate was relatively cold, thick continental iithospheie.

Areas of hot spot magmatism generally have a thickened pillow basalt

section and a greater abundance of highly permeable rocks. These thickened

pillowed sections can support more intense hydrothermal activity. Increased

hydrothermal alteration at hot spots, particularly ridge-centered hot spots,

could also have contributed to the relative abundance of Archaean massive

sulfide deposits.

In conclusion, it is probable that many of the differences in preserved

Archaean and Phanerozoic greenstone belt/ophiolite terranes can be explained

as a result of a difference in the relative importance of different plate

tectonic processes. This difference is a direct result of the increased in-

ternal heat production of the earth in the Archaean.
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Distribution, Lithologic characteristics and Stratigraphic

relations. Distribution of early Proterozoic volcanic rocks in

the West African shield is shown in Fig. i; an approximate

boundary between Archean age terrane, to the west, and the

Proterozoic terrane to the east, is partly marked by a major

fault. Lithologic and chemical data have been compiled for belts

(2-9) in the Proterozoic terrane from BRGM reports _l,_ .

Available stratigraphic information from geologic maps of these

areas indicate that a typical sequence is comprised of

predominately mafic lava flows (basalt-andesite) at the base,

which are overlain by felsic volcanic rocks including pyroclastic

rocks and lavas. This succession, referred to as Lower Birimian,

is overlain by Middle and Upper Birimian sedimentary rocks.

Lithostratigraphic data from belt (1), located in northeastern

Ghana _], indicate the volcanic succession is 6-8 km thick. The

lowest unit in this succession is represented by 2 km of felsic

pyroclastic rocks, flows and fine grained sediments. This is

followed by 3-4 km of basaltic lava flows which are locally

pillowed, the top of the unit is marked by a distinctive

munganese formution (MF) consisting of Mn-Fe rich cherts up to
200 m thick. Dacitic lithic tuffs, welded tuffs and andesitic

Flows up to 2500 m thick overlie the mafic lava Flow unit. The

youngest volcanic unit consists of mafic tuffs and breccia with a

distinctive Fragmental texture. Preliminary data indicate that a

similar succession occurs in belt (I0). The internal plutonic

rocks of belt (I) include: (a) hornblende-bearing granodiorite
bodies considered to be subvolcanic plutons (ff-plutons); and (b)

post-kinematic mica-bearing granitic plutons (pi-plutons).

External plutonic rocks include tonalitic and granodioritic rocks

which immediately flank the volcanic belt, and paragneisses which
occur within the plutonic terrane.

Chemical charcteristics and Ages. Of about 100 chemical

analyses reported for belts(2-9) calc-alkaline rocks consitute
55_ and tholeiites 45_. Quartz-normative basalt constitutes 99_

of the rock type in the tholeiitic suite. In the calc-alkaline

suite, 9_ of the analyses is basalt, 45_ andesite and the rest is

dacite and rhyodacite. The ratio of tholeiitic to calc-alkaline

rocks based on the stratigraphic thicknesses and chemical

analyses of samples From belt (I) is between 57_ and 43_.

Ultramafic volcanic rocks occur in belt (3), indicated from

chemical data from belt (6) and (9) and constitute 1% of all

samples analysed. Komatiites have not been reported from the

West African Shield, thus the rocks analysed may be classified as

high-Hg-basalts. The tholeiitic rocks from belt (i) are enriched

in Ti, and depleted in Zr relative to modern ocean floor basalts

_] ,and are depleted in K, Rb, Sr and Ba relative to the
calc-alkaline rocks. Within the calc-alkaline suite which

include the subvolcanic plutons, the major and trace elements
show continuous trends from calc-alkali basalts to rhyolites.
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The hornblende-bearing plutons plot in granodiorite and diorite

fields of Q-Kf-PI diagram; whereas the rocks from the pi-plutons

have normative and modal mineral compositions of granodiorite,
quartz-monzonite and minor quartz synite and monzonite. All the

plutonic rocks are strongly HREE depleted [6]. The -plutons
(SiO2=56-66%) show the least depletion with _a/Y_n = 13-43. The

paragneisses of the external plutonic terrane (SIO2=70-71%) show

the steepest REE pattern with _a/Y_n = 33 - 66; while the

post-kinematic plutonic rocks (SIO2=70-75), and La/Yb = 18 - 58,

are somewhere in between. Relative to the subvolcanic plutons

with (Th=1.9-5.7, and U=0.9 -1.9) the pi-plutons are enriched in

Th and U (Th=7.7-10.9 and U=4.5-25ppm). Age of volcanism in the

West African Shield is not known; however, K/Ar and Rb/Sr ages

have been reported for the rocks which intrude the volcanic rocks

and can be used to place minimum age limits. Rb/Sr analyses of

mica pi-pluton samples from belts (2-9) yielded the following
ages (my): 1870 ± 157 to 2004 ±42 for whole rock; and 1940_45

mineral (plagioclase) isochron _]. K/Ar analyses of amphiboles
from belt (i) gave the following ages: (i) an older age of 2223±

283 was obtained from hornblende in the youngest volcanic unit;

and (ii) a younger age, 2087 ± 138 was obtained from zoned,
titaniferous hornblende in a deformed diorite porphyry intruded

into the lowest unit in the volcanic succession. The available

data lead to the conclusion that the minimum age for the volcanic

activity must be between 2200 and 2100 my. It is significant
that Archean ages have not been reported from any of the volcanic

belts (i-I0).

Structure of an early Proterozoic Volcanic belt in

northeastern Ghana. Cleavage in the volcanic belt strikes N40E

and dips steeply to the NW and SE. Mesoscopic folds, with

locally well developed axial surface cleavage parallel to this

foliation, plunge steeply NW and SE. Because the orientation of

fold axes and cleavage surfaces do not change with respect to the
stratigraphic position, it is concluded that the whole volcanic

succession was deformed during a pre-2000 my old orogenic event.

Evidence for multiple deformation occurs in the form of NW
plunging folds and the folded trace of the axial surface of the

major folds. The strong NE-SW orientation of the major
structures is such that one has to conclude that the second

deformation was not as intense as the first. Foliation in the

external plutonic terrane is subparallel to the foliation in

adjacent volcanic rocks. Unequivocal evidence for pre-greenstone

belt structure was not found in the external plutonic terrane;

however, NS structures occur in the paragneisses, which are

oblique to NNE-NE structures in the volcanic belt. Gravity

anomalies associated with the greenstone belt and the internal

plutons have been modelled taking the surrounding plutonic

terrane as background. The model predicts that the depth to the

bottom of the volcanic succession is 3-4 km. Fig 2 is a
structural section of belt(l) based on gravity models especially

with regard to allowable geometries of the rock units at depth.

The overturned limb of the major anticlinal fold is consistent
with available facing indicators.
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Fig I. West African Shield showing the distribution of

Proterozoic volcanic-sedlmentary belte: I) early
Proterozoic volcanic belts, numerical labels referred to

in teYt: 21 lmt_ Prn_mPn,n_r _l.*f_.. .._4...m.; _
boundary between Archean and Proterozoic shields.
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Fig 2. Geologic section across belt (I) in northeastern Ghana:

I) epiclastic sediments and turfs; 2) maflc laves
(tholeiltlc basalts); 3) felsic turfs and intermediate

lavns (cslcalkaline); 4) postkinemattc granites

(pi-granlte); 5) granodlorltes, tonalites mad
paragneinses of external plutontc terrane.
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Introduction. Low-grade metagraywacke and greenstone of the Vermilion
district and amphibolite facies schist and migmatites of the Vermilion

Granitic complex (VGC) are separated by a series of east-trending dip-slip and

strike-slip faults (Fig. l)(1). Structural analysis in the boundary region

between these two terranes indicates that they both sustained an early DI
deformation which lead to recumbent folding. This was followed by a north-

south transpression that resulted in the generation of upright Fp folds and

Iocallywell-developed, dextral, D_ shear zones (2). Despite th_se
correlations, there are distinct d_fferences in structural style and late-

stage fold history between the two terranes that we attribute to: I.

differences in the crustal levels of the two terranes during deformation, and

2. effects of late-D_ plutonism in the VGC.

D_ deformation hroduced a series of upright F_ folds with easterly
strikin-_ axial planes that are the most prominent f_Id structures in both

terranes. The largest fold of this series is a westerly plunging antiform

that straddles the dip-slip fault boundary between the two terranes (Fig. 2).
Large-scale parasitic folds on this structure are invariably of S symmetry in

the southern VGC and occur on the northern limb of the antiform. D_ dextral
shear zones are well represented in the Vermilion district where thgy are

generally parallel to the regional F_ axial planes. Although distinct ductile

shear zones are not observed in the VGC, evidence of a Da dextral shear
component is locally indicated by asymmetrical pull-aparts and rotated vein

segments in the migmatites.

recumbent folding is inferred from structural facing in the major F2
antiform that crosses the boundary between the two terranes. Facing is

downward on both limbs of the fold which is interpreted to be part of the

lower, overturned limb of a large-scale FI recumbent fold (Fig. 2). A change

to upward facing strata further south in the Vermilion district indicates a

crossing onto the upper limb of this structure. Finite strain data,
determined from clasts in sedimentary/volcaniclastic units in the Vermilion

district, can be completely accounted for in terms of the deformation

producing the F_ folds (3). Locally intense Fl folding in these rocks is
therefore attributed to deformation in soft or very poorly lithified sediment.

However, biotite schists making up part of the same structure in the VGC

display a pronounced $I foliation that developed parallel to bedding during
the early stages of metamorphism. We have suggested that metamorphic

dehydration reactions occurring in the lower strata led to the development of

high pore pressures in the upper portion of the sedimentary pile (4 and 5).

The combination of high pore pressures and gravitational instability during

the FI folding resulted in soft-sediment, coherent down-slope movement in the

upper'strata while the lower strata underwent strain and metamorphic

rescrystallization during FI folding. Soft-sediment FI folding in the

Vermilion district could ha_e led to a rather complex distribution of F_

structures, because the more competent greenstones could not have been _oft

and therefore may have undergone a much different response to the F_ folding.
F_ folding has been observed only in the VGC to the north of the

bounda_ zone wTth the Vermilion district, near the southwestern contact

between the migmatites and the Lac La Croix Granite batholith. Along this
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margin of the batholith, F_ folds were reoriented during the emplacement of

the pluton and subsequentl_ refolded by F_ conical folds that formed during

the waning stages of the regional north-s_uth transpression that generated the

F_ folds (Fig. 3). Such F_ folds are not observed along the southern margin

of the batholith where the_F_ folds are parallel to the batholith boundary and
therefore were not reoriented.

Insummary, our analysis of the deformation along the boundary between

the Vermilion Granitic Complex and the Vermilion district indicates that the

two terranes have seen a similar deformation history since the earliest stages

of folding in the area. Despite this common history, variations in structural

style occur between the two terranes, such as the relative development of D,
fabrics and D_ shear zones, and these can be attributed to differences in tile
crustal level_ of the two terranes during the deformation. Similarly, the

local development of F_ folds in the VGC, but not in the Vermilion district,

is interpreted to be a_result of late-D_ pluton emplacement which was not
significant at the level of exposure of_the Vermilion district.
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Figure I. Geologic map of the southern Vermilion Granitic Complex and adjacent areas, after (6).
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Fig. 3a. Major F 2 folds develop In "

both the western Vermilion district and the

southern Vermilion Granitic Complex tn

response to a regional north-south

compression. The WaKemup Bay pluton Is

emplaced during the later stages of F 2

folding and either emplacement of the pluton

or e_placement of the Lac La Crolx batholtth

reorients the adjacent F 2 antiform. At

the same time. F 2 folds along the

southwestern margin of the Lac La Crolx

Granite are reoriented by the rlsine

batholith.

FIE. 3_ The reoriented F z folds

adjacent to both the vaJ_ernup Bay pluton and

the Lac La Croix batholtth undergo F 3

refoldlnl as a result of continued

north-south compression during the waning

sta|e, of HI metamorphism. F 2 folds In

the migmatites along the southern margin of

the batholtth undergo no significant

reorientation during rise of the batholith,

so that continued north-south compression

results in continued flattening of the F Z

folds rather than refoldlng. The same

continued flattening affects the F 2 folds

in the western Vermilion district whlch is

l_rlelF unaffected by local granttold

plutonlmm at the present level of exposure.

Vi|. 3c. Following dip-slip displacement

on the Hale¥ fault, the F3 fold cored by

the VaRemup Bay pluton and the F 3 folds

southwest of the Lac La Crolx bathollth are

Juxtaposed by right-lateral striKe-slip

displacement on the Vermilion fault.
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DHARWAR CRATON, SOUTH INDIA= PROBLEMS AND PERSPECTIVES
FOR FUTURE RESEARCH

Y.3. BHASKAR RAO, National Geophysical Research Institute, Hyderabad, INDIA

The two fold stratigraphic subdivision of the Archean-Proterozoic greenstone-
gneiss association of Dharwar craton into an older "Sargur group" (older than
2.9 Ga.) and a younger "Dharwar Supergroup" (1) serves as an _ stratigraphic
model. The concordannt greenstone (schist)-gneiss (Peninsular gneiss) relationships,
ambiguities in stratigraphic correlations of the schist belts assigned to Sargur
group and difficulties in deciphering the older gneiss units can be best appreciated
if the Sargur group be regarded as a trimodal association of= (i) ultrabasic-mafic
metavolcanics (including komatiites), (ii) clastic and nonclastic metasediments

and paragneisses and (iii) mainly tonalite/trondhjemite gneisses and migmatites
of diverse ages (2) which could be as old as c. 3.# Ga. or even older. The extensive

occurrence of this greenstone-gneiss complex is evident from recent mapping
in many areas of central and southern Karnataka State.

The Dharwar Supergroup is deposited unconformably over an ensialic basement
comprising the older trimodal association and is further divisible into a lower
Bababudan and an upper Chitradurga groups. The volcanic and sedimentary rocks
in the Dharwar schist belts display highly variable compositions9 lithofacies and
stratigraphic thicknesses. The available data is compatible with their deposition
in a variably subsiding and progressively evolving basin(s) in an intracratonic or
continental margin setting. The Bababudan group is dominated by sediments charac-
teristic of the nearshore intratidal to shallow marine environments and subaerial

toshallow marine volcanics (B, #). The sediment thickness and way-up criteria
are suggestive o5 progressive subsidence of the basin from south to north and
concomitant accumulation of sediments derived from both intrabasinal and exterior
sources which culminated in the deposition of thick (over 5 kms) sequence of
polymict conglomerates and alluvial fan deposits in the rapidly subsiding Kaldurga
basin (4). Subsequent sedimentation and volcanism proceeded in essentially deep
marine environment as evident from rocks in the interiors of Shimoga and Chitra-
durga belts. The volcanic character evolved from predominantly tholeiitic (with
minor komatiitic occurrences) in the lower units of Bababudan group to calc-alkalic
affinities in the upper units of the Dharwar Supergroup. The overall major and
trace element compositions of the Dharwar metavolcanics are comparable to
Phanerozoic volcanics from continental margin or back-arc settings. While both
light REE depleted and enriched types arenoted often within the same volcanic
formation, an important feature of the metavolcanics is their high Zr/Y character
compared to most other Archean volcanic suites in the southern hemisphere sugges-
ting possible trace element heterogeneities in the source regions of Dharwar
volcanic rocks (5, 6).

The greenstone and gneiss formations throughout the craton show evidences
of two or three phases of deformation with superposed folding resulting often
in complex interference patterns. Both pre-Dharwar and Dharwar formations
display broadly similar deformation styles and a remarkable parallelism in their
tectonic fabrics differing in the intensities of deformation and grade of regional
metamorphism (#, 7). The older sequences show superposition of tight upright
or overturned isoclinal and/or recumbent folds of the first and second generations
(FI and F2) and a set of open folds (F3)and metamorphosed to amphibolite or
granulite facies while the Dharwar rocks are generally in greenschist facies with
large scale recumbent and tight isoclinal folds being uncommon (4). The structural
history of the craton is complicated by repeated syn or late tectonic diapirism
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and intense shearing, strike=oblique slip movements and thrusting particularly
along several of the N-S trending regional shear systems (8).

Apart from the general problems concerning the conceptual approaches to
early Archean tectonics and crustal evolution, the stages of the tectonic evolution
in the Dharwar craton are poorly constrained by lack of information on many
crucial aspects of the geology such asl chrono-stratigraphy of schist belts, timing
of the major thermal and tectonic events, schist-gneiss relationships and their
relative antiquities in the (older) trimodal association) the nature and evolution
of the low grade-high grade transitions in the craton. Thus, while the evolution
of the pre-Dharwar greenstone-gneiss association is largely enigmatic, the Dharwar
Supergroup appears to be a consequence of wide-spread heating of the continental
crust around c. 3.0 Ga., tectonic instability resulting in rifting probably along
reactivated pre-existing lineaments, formation of broad basin(s), volcanism and
sedimentation concomitant with variable rates of subsidence of the basin(s) in
response to basement instability and differential upliftment of the surrounding
basement highs (horsts?) across the boundary faults (4). The tectonic evolution
of the pre-Dharwar crust and the relative importance of the "thick skin" vis-a-vis
"thin skin" tectonics (4, 8) to the Archean/Proterozoic history of the Dharwar
craton can be assessed only after more detailed structural data on a regional
scale become available in conjunction with precise and reliable data on the primary
and metamorphic ages of the schists and gneisses in the craton.
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GREENSTONE BELT TECTONICS - IHERMAL CONSTRAINTS: M.J. Bickle (Dept
Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, U.K.) and
E.G. Nisbet (Dept Geological Sciences, University of Saskatchewan, S7N OWO,
Canada).

Archaean rocks provide a unique record of the early stages of evolution

of a planet. Their interpretation is frustrated by the probable unrepresenta-

tive nature of the preserved crust and by the well known ambiguities of tec-

tonic geological synthesis. Broad constraints can be placed on the tectonic

processes in the early earth from global scale modelling of thermal and chemi-

cal evolution of the earth and its hydrosphere and atmosphere. The Archaean

record is the main test of such models. It is the purpose of this contribu-

tion to outline what general model constraints are available on the global
tectonic setting within which Archaean crust evolved, and what direct evidence

the Archaean record provides on particularly the thermal state of the early
earth.

The distinct tectonic style of Archaean granite-greenstone terrains un-

doubtedly reflects secular variation in the earth's tectonic processes as a

result of chemical and thermal evolution. Since tectonic processes are a

direct manifestation of heat loss processes in the earth, changes in the

earth's thermal state are likely to be primariiy responsible for changes in

tectonic style. However, the geological record of tectonic processes is also
influenced by the state of chemical evolution of the solid earth and its

hydrosphere and atmosphere. As discussed below the basic volcanic dominated

nature of greenstone belts is probably as much a consequence of higher mantle

temperatures as any specific tectonic setting. Until proved otherwise we

must assume that 'greenstone belts' formed in as wide a range of tectonic

environments as modern sedimentary sequences. Care must be taken to distin-
guish features which are due to a specific tectonic environment from those

indicative of general tectonic processes in the Archaean earth.

Global Thermal Histories

Calculations of global thermal evolution are based on derivations of

relationships between internal temperature and heat loss. Given such a rela-

tionship and the present temperature and radiogenic heat producing element

distribution within the earth it is possible to calculate temperature distri-

butions in the past with the assumption that the heat loss processes (convec-

tion) varied only in rate throughout earth history. Most current models are

formulated to satisfy the cosmochemical constraint that present day radiogenic
heat production produces about half of the total heat loss and that the earth

was hot soon after accretion [e.g. 1]. The main area of uncertainty intrinsic
in the modelling is the treatment of convection in a fluid of temperature

sensitive and non-Newtonian viscosity. One set of models, the 'parameterised'

convection calculations, derives a relationship between internal temperature

and heat loss by computing heat loss as a function of viscosity for a series

of models run with internally constant but differing viscosities and assuming

some form for the viscosity temperature dependence. Implicit in such model-

ling is the assumption that convection in a variable viscosity fluid can be

approximated by a constant viscosity appropriate to a characteristic tempera-

ture within the system. However, as first demonstrated by McKenzie and Weiss

[2] the assumptions of parametrical convection calculations are not approp-

riate to convection in variable viscosity fluids. Christensen [3] points out

57
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that it is the lower-temperature higher-viscosity upper boundary layer that

dominates convection rates and if heat loss should scale against any internal

temperature it will be a temperature within the upper boundary layer rather

less than the interior temperature (or correctly interior potential tempera-

ture which is mantle temperature normalised along an adiabatic gradient to

zero pressure). It is the interior temperature which is used for scaling by

the parameterised calculations. The difference may be illustrated by compari-

son of temperature - heat loss relationships.

The parameterised calculations lead to an expression for the relationship

between the Nusselt number Nu (the total heat flux to conducted heat flux) and

the Rayleigh number Ra of the form

Nu _ Ra 6

where 6 is between ¼ and I/3. This relationship determines the temperature

sensitivity of the heat flux.

Christensen's calculations with variable-viscosity fluids suggest that

values of 6 around 0.05 are more appropriate over the limited range of the

experiments. The real uncertainties are rather greater than this given the

possibility of a layered mantle, two scales of convection in the upper mantle_

partition of heat loss between oceanic and continental regions and melting

with associated density changes with the upper U]erma] boundary layer. Sub-

stantial deviations in tectonic style From modern plate-tectorlics could Fur-

ther influence heat loss.

Two important conclusions may be deduced from the thermal modelling.

I. All the calculations indicate that the interior temperatures have not

changea by more than a few hundred degrees over most of Earth history, al-

though individual model predictions vary by a factor of two (Fig. 1).

170(
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_ vislosity [31

TIME Oa
l , i

4. 3 2 t o

Figure I. Comparison of variation of mantle temperature with time computed

for parameterised model [l] and variable viscosity model [3]. Models for

whole-mantle convection and approximately similar viscosity:temperature
functions.
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2. All Lhe models predicL LhaL higher internal temperatures resulL in thin-

ner, higher Lhermal gradient boundary layers (PlaLes)[1,3]. Further con-
sLrainLs must come from Archaean geology, which provides evidence on two cri-

Lical parameLers, upper manLle Lemperatures and continenLal liLhospheric
Lhermal gradients.

1. Mantle Temperatures

The presence in Archaean greenstone bells of komatiitic lavas more mag-

nesian than any younger lava is one of the few distinctive feaLures of the

Archaean and prime evidence thaL mantle LemperaLures were higher. To quanLify

the difference we need to know (I) Lhe eruption temperature of komaLiiLes and

(2) the relaLionship beLween komaLiiLe erupLion temperatures and mantle

temperatures. The first question has provoked surprisingly little discussion

given iLs significance [e.g. 5,6]. Liquidus temperatures of komaLiiLic lavas

are proportional Lo MgO conLenL but this may be increased by olivine accumula-

Lion. Glassy, near phenocrysL free lavas [7], and relict forsLeriLe-rich

olivine composiLions have been taken to indicate liquids at least as magnesian

as 27-30% NgO [5] although this is disputed [6]. Alternatively excess H20 or

alkalis have been suggested as fluxes lowering liquidus LemperaLures [e.g.8].

The lakLer is poLenLially LesLable through the temperature dependence of Ni
nl _lp_n_.l {nl,{rl n_T-t-{b_nn r.n_l_f'{n{l=nl-_ _lt'hn, lnh el,nh e,let-_m_l-{n l'Dei-e h_ nnt-

been made. Even so eruption temperaLures of _1500°C (25,% HgO) to _1600°C
(30_ HgO) are 1OO-2OO°C hoLLer khan any more recent lava.

The relationship between komaLiiLe temperature and mantle temperature is

more problematic. Adiabatically upwelling mantle cools along substantially
higher thermal gradients (higher dT/dP) above the solidus as a result of the

latent heal of melting (Fig. 2). If komaLiiLes represent _50,% melts aL high

1100 1500 £ 2000

I

100'
I

5 :

200 _

depth GPa _ _ I_

km 8 _ , , /
Figure 2. HanLJe liquidus and solidus and adiabatic ascent paths calculated

with the assumption LhaL melt and solid do not segregate on ascent, after
HcKenzie and Bickle [2_].
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level with an olivine residue then a 1600°C komatiite must be derived from a

mantle in excess of 2000°C fromdepths >300km where we are essentially igno-

rant of mantle solidus-liquidus temepratures. Such temepratures substantially

exceed the upper bound of mantle temperatures derived from global thermal

modelling. Alternatively it has been suggested that eutectic melts at high

pressure shift to komatiite compositions [9]. Available phase equilibrium

data suggests this might be in the region 50-100 kbar [Fig.3]. If so koma-

tiites might be derived from mantle temperatures of 1800°C-1900°C, a potential

temperature of 1700-1800°C, and 400-500°C hotter than present day average
mantle. If komatiites are derived from anomalously hot upwelling convective

instabilities the potential temperatures of such regions are 200°C-300°C

hotter than mantle in present day thermal plumes.

1200 1600 "[ 2000
I I I

2

Figure 3. Phase relations for melting mantle-like compositions from

experiments on komatiites. Note intersection of garnet melting curve
with the pyroxene melting curve is hypothetical.

The chemistry of komatiites is not obviously reconcilable with their

being small degrees of eutectic melts. Incompatible element concentrations

are surprisingly uniform and are consistent with komatiites being _50% melts

of plausible mantle materials [10,11]. Small degrees of melt would be

expected to be substantially enriched in incompatible elements although parti-

tion coefficients at the pressures of komatiite genesis are unknown and sub-
stantial modifications to komatiite chemistry by wall rock interaction might

be expected during their ascent [12].

Komatiite genesis is therefore problematic. However, even the most con-
servative estimates of komatiite eruption temperatures (a 25% MgO 1500°C lava)

implies mantle potential temperatures _200°C hotter than at present and a 30%

MgO, 1600°C lava is inferred to imply mantle potential temperatures _400°C

greater than today. One further complication is the possibility that at high

pressure the komatiite melt density exceeds that of solid mantle. If the in-

version in density is associated with a change in sign of the pressure
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derivative of the potential temperature on the melting curve existence of a

stable magma ocean at depth is probable [13]. The implications of such a

magma ocean for global thermal and chemical evolution are profound.

2. Crustal lhermal Gradients

Metamorphic pressures and temperatures record anomalous thermal condi-

tions in tectonically active crust. If sufficient is known about the tectonic

setting of the metamorphism it is possible to invert the perturbed thermal
conditions to infer steady state Jithospheric thermal gradients [14]. Models

for such inversion are mostly based on the thermal time constant over litho-

spheric thicknesses being rather greater than that of tectonic events (_<50

Ma). Given the possibility of magmatic or fluid heat transfer, such models

tend to put upper bounds on lithospheric thermal gradients.

Archaean metamorphic conditions exhibit as wide a range of thermal gra-

dients as modern orogenic provinces. High thermal gradients may at least

locally be associated with magmatic advection of heat [15]. The lower thermal

gradient, higher P/T metamorphism has attracted most interest as it places

limits on the magnitude of lithospheric thermal gradients. The widespread

8-10 Kb, 700°C-900°C conditions recorded by gneiss terrains [16] imply back-
ground gradients little different from those in modern continental litho-

sphere. Hnwever, Morgan [17] suggests that these metamorphic conditions are

buffered by crustal melting and heat flow in these regions is underestimated.
Comparable high P/f metamorphism is known from upper-greenschist and amphi-

bolite facies Archaean terrains [15,18-20] although it is less well documen-

ted. This is inconsistent with high heat flow through the underlying crust

and not explicable as buffered by melting.
The inference from the metamorphic conditions of relatively low litho-

spheric thermal gradients has received substantial support from the observa-

tion of the formation and preservation of Archaean age diamonds [21]. These

imply 1½thospheric thicknesses of N150-200 km and mantle heat flux as low as
20 mWm

The observation that greenstone belts may have formed or been preserved

in continental crust with relatively low thermal gradients has far-reaching

implications for Archaean tectonics. Study of the metamorphism and its tec-

tonic setting in greenstone belts would seem to be one rather neglected area

of greenstone tectonics.

Implications on Global Thermal Evolution

The evidence for a significantly halter mantle implied by komatiites is

irreconcilable with the evidence for a thick cool continental lithosphere if

the lithosphere behaved as its modern counterpart. There is good evidence

from the depth-age relationships of oceanic lithosphere and sedimentary basin

evolution that Phanerozoic oceanic and continental lithosphere behaves as a

simple thermal boundary layer. To preserve a similar or greater thickness of

Archaean lithosphere requires some additional process to stabilise the con-

tinental lithosphere. Morgan [17] suggests that increasing the concentration

of radiogenic heat production might achieve this. It might but temperatures

in the lower part of such lithosphere would be inconsistent with diamond

stability at depths less than N200 km. An alternakive

mechanism is that the stabilisation results from density changes on melting

[e.g. 22]. One consequence of a higher temperature mantle is that melting

would start at much greater depths (Fig. 2)(_115 km for a 1600°C mantle versus
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-60 km for the present day N1300°C mantle). The depleted zone is comparative-

ly less dense than unmelted mantle although whether the relatively smatl

changes are sufficient to stabilise the lithosphere against convective instab-

ilities is open to question. The mechanism of stabilisation of Archaean con-

tinental lithosphere and the formation and preservation of Archaean diamonds

is a k_y question. It has implications both for Archaean tectonic interpre-

tations as well as subsequent global evolution given the significance of the

continental lithosphere to continental tectonics.

There is one further significant tectonic implication of a hotter mantle.

The amount of melt produced by upwelling mantle is proportional to mantle

temperature [Fig. 4; 23]. With a 1600°C mantle any tectonic activity such as

5O
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Melt thickness
for infinite stretching

km
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Figure 4. Melt thickness as a function of mantle temperature for infinite

stretching (oceanic ridge case) after McKenzie & Bickle [23].

crustal extension which led to mantle upwelling would produce significant

magma. It seems probable that the basalt dominated nature of both Archaean

gceenstone and late Archaean cratonic supracrustal sequences is a reflection

of mantle temperature and not necessarily of a special tectonic setting.

The extrusion of thick dense basaltic volcanics in supracrustal sequences

may be an important factor in the development of the characteristic tectonic

style of granite-greenstone terrains.

Archaean Tectonic Regimes

The prime assumption of all the global scale Lhermal models is that heat

loss processes changed only in rate. One hotly debated point is whether

plate tectonics or some alternative tectonic scheme operated during the

Archaean. For example, Richter [I] has suggested that once converting mantle

penetrated the melt region below continental lithosphere the surface tectonic

regime would be dominated by vertical recycling rather than horizontal
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motions. This scheme does not explain the preservation of the early Archaean

crustal relicts for which some special survival mechanism must be proposed.

Perhaps the best evidence for major horizontal (plate) motions lies in the
linear tectonic beIts characteristic of the larger Archaean terrains (Superior

Province, Yilgarn Block) and the evidence for large scale overthrust nappe

tectonics in the high-grade gneiss belts. Other geological evidence is open

to interpretation. For example, the significance of the caIc-alkaline-like

granite suites, possible analogies between some greenstone belt mafic sequen-

ces and ophiolites and the tectonic state of greenstone belts (aIlochthonous
or authochthonous) are all disputed. One additional line of evidence does

strongly suggest division of the Archaean earth into continental and oceanic-

type regions. The heat loss through the Archaean continental regions inferred

from metamorphic thermal gradients is too low by an order of magnitude to be
representative of heat Ioss from the Archaean earth [24,25]. The extra heal

is plausibly lost through oceanic-like regions as is the case today. This

would involve substantiai melting and recycling of volcanic crust.
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Hundreds of intracontinental rifts ("elongate depressions [within
continents] overlying places where the lithosphere has ruptured in extension"

ref. 1) with ages between 3.0 and O Ga have been recognized on earth (2,3,4).

Compressional features are either absent or insignificant in the vast majority

of these rifts. Prominent compressional features are reported from only a very
few rifts. (Notably: the Benue trough (5) the Dneipr-Donetz rift (Fig. 1) (6)

the Southern Oklahoma rift (7) and the rift occupying East Arm of Great Slave
Lake (8)).

Intense compression is the rule in greenstone belts and preservation of

regional extensional structures is rare. (Abstracts at this meeting). Whatever
greenstone belts are they do not satisfy the definition of intracontinental
rifts.

Wilson (g) showed that a common fate of intracontinental rifts is to

develop into oceans and that oceans are likely to close. Mountain belts mark
places where oceans have closed. In contrast to intracontinental rifts both

mountain belts and greenstone belts are dominated by compressional structures.

Pursuing Wilson's idea I therefore su-_est that it might be useful for students
of greenstone belts to test the hypothesis that: "Greenstone belts are

.......=_ L.... ,.. _w__h EANS have closed". Oce_o_g is a.,uu,,_a,,,-u_Its ,,,a.-_ing ere OC
I complicated process {ref. I} and some of the regional complexities that may be

recorded in greenstone belts are indicated in Fig. 2.

There is a possibility that students of greenstone belts are confusing each
other because some who describe greenstone belts as intracontinental rifts may

be consciously concentrating on an early episode in greenstone belt evolution

and recognize that the belts have a later oceanic and collisional history. I

suggest that this practise is confusing and is rather like describing Ronald

Reagan as a movie actor and ignoring more significant later episodes in his
career.
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Figure I. (from ref. 6) Illustration of how rifts within a continent

(such as the Dneipr-Donetz rift) have been affected by neighboring

continental collisions (as the Dneipr-Donetz structure responded to
collisions in North Dobrudja in the Early Jurassic). Observation

has shown that folding and thrusting developed in this environment is
much less intense than that with which we are becoming familiar in

greenstone belts.
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Figure 2. (from ref. 6) A possible origin for some greenstone belts.
Rifting (I) takes a continental fragment out into an ocean (II). Major
strike-slip motion (llla) is depicted as preceding collision between
slivers of the continental fragment and the main continent (IVa). As an
alternative suturing may take place (lllb) before major strike-slip
motion (IVb). In either case the preserved suture zones may end abruptly
at strike-slip faults and late rotation may preserve puzzling polarities
(Vb).
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During the past two decades many words have been written

both for and against the hypothesis that the tectonic settin9 of

a suite of igneous rocks is retained by the chemical variability

within the suite. For example, Pearce and Cann (I) argued that

diagrams can be constructed from modern/recent basalt

subcompositions within the system Ti-Zr-Y-Nb-Sr such that

tectonomasmatic settings can be reclaimed. If one accepts their

9eneral conclusion, it is temptin9 to inquire as to how far this

hypothesis can be extended into other petrological realms. If
chemical variations of metabasalts retain information relatin9 to

their 9enesis (tectonic setting), for example, this would be most

helpful in reconstructin9 the history of basalts from 9reenstone
belts.

Pearce and Cann (I) type diagrams are prepared by selectin9

a trainin9 set for which the tectonic settings of all of the

analyses are known and obtainin9 a projection in which overlap of

the fields of the known 9roups is minimized. IF, the trainin9 set

is representative of a lar9er target population of interest, the

projection may allow assignment of an "unknown" (an analysis not

part of the trainin9 set) to one of the recognized 9roups. As

the ratios of the variables are retained when percentages are

formed, the search for such fields presumes that there are limits
on the ratios of the three variables which identify a particular

tectonoma_natic setting. The selection of three components and

projection onto the plane of the ternary, however, does ignore

potentially useful information and one could argue that a

dimension-reducin9 procedure such as principal components

analysis might lead to a more satisfactory and potentially useful

display form.

However, a successful analysis of date with any multivariate

procedure requires more than an understandin9 of the procedure

itself. Additionally, the form of the data should be such that

statistical procedures can be rationally interpreted. The

subcomposition Ti-Zr-Y-Sr, for example, is part of a set of

percentases and therefore subject to all of the concerns

previously expressed by Chayes (2), Butler (3) and others

concernin9 difficulties in interpretin 9 both statistical measures
of relationship (such as the correlation coefficient) and

empathetic analysis of "patterns and trends" expressed in some

compositional sub-space.

Simply stated, a set of composition percentages contains a
mix of information from at least two sources:

(1) physical/chemical relations amon9 the variables

(2) a change in the structure of the data as a result of

a transformation such as percentage formation.

Statistical procedures typically allow one to recognize a

behavior pattern that departs from a hypothesized expected

behavior. The difficulty in interpretin9 percentages arises as a

result of the mix of information noted above. For example, 9iven
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a statistic•fly significant correlation between Zr and Taw can
one automatically assume that contribution from the mechanical
process of forming percentages is negligible? Is it possible, in
fact, that the mechanical process is the only one operative for a
given measured relationship? Can the investigator separate these
two effects in a given situation and assess their influence?

Until recently (Aitchison, 4,5) these questions received •
great deal of discussion and warning (Chayes, 2 and Butler, 3)
but no defined solution. Aitchison (4,5) presents • set of
procedures that ultimately ate designed to allow an invstigstOT
tO make use of information contained within a set of peTcentsges

and these procedures are adequately described in the literature.
R training set of average Tt-Zr-Y-Sr analyses of 35 modern
basalts (including 24 from Pearce and Cann (1) and 11 drman from
the current literature) with known tectonic settings was drawn
from the literature Space is insufficient to tabulate these raw
data and details will be published elsewherel copies of the rw
data, however, are available from the author).

Rltchlson's tests for basis independence (4) and complete
subcomposltional independence (5) both reject their respective
null hypotheses (6). Thus, the investigator is aSSUTed that the
mechanical contTlbution is not dominant and that a physical-
chemical interpretation is warTented. Each analysis was
normalized to its geometric mean and eigenvalues and associated
eigenvectors extracted from the vaTiance-covariance matrix of the
resulting log-row-centered data using principal components
analytical procedUTeS. The first two eigenvalues account for
some g2_ of the total variance and a plot of the first two
principal component scores is given in Figure 1. The bound•ties
are empirical and constructed so as to isolate the known
tectonomagmatic groups. The distribution of scores successfully
delineates (1) the N/thin Plate Bssalts, (2) the 0ce•n Floor
B•salts, and (3) the Arc Basalts. The pTincip•l component scores
ate computed as follows1

Score 1 = -0.371*Ti-O.O67_ZT-O.399*Y+O.836*ST
Score 2 = -0.338*Ti-O.560*ZT+O.740*Y+O.158*ST

where the Individual variables ate expressed in log-TOW-centered
form. In keeping with Pc•Tee and Cann's suggestions (1), Ti is

defined as Tt02 times 100 and Y is defined as 3Y. As one is
dealing with a logarithmic function, multiplication by • constant
changes the scale of the TeSUltins projection but not the spatial
relationships. Ten sets of analyses from the literature were cast
into the space defined in Figure 1. In general, the
tectonomagmattc settings pTedtcted from Ftgure 1 ate in excellent
agreement with interpretations by the respective authors. Of
prime concern in this case, however, is the effect of
metamorphism on such subcompositions. Hany authors (1) have
noted that Sr is easily mobilized during low to intermediate

grade metamorphism whereas Ti, ZT and Y remain relatively
constant. Three of the 35 analyses ere plotted in Figure 2 with
additions and subtractions of 10% and 30_ total St. These sets
of points define sets of straight lines which a_e subparallel to
the X-axis. Note that the "trend" of these lines is such that it

69
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may be possible to differentiate between Within Plate and Plate

Margin Basalts (Ocean Floor plus Arc) if the above model for Sr
mobilization holds.

Perhaps a combination of detailed knowledse of the 9eology

of a particular 9reenstone assemblage plus judicious use of

diagrams anaiosous to Fisure 1 will enable the investigator to

see through effects which heretofore may have masked

petrosenetically significant information.
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Univ. Chica9o Press, Chicago, Ill. (3) Butler, J.C. (1979) Amer.

Mineral.: 64, 1115. (4) Aitchison, d. (1981) Math. Geol.s 13,

175. (5) Aitchison, J. (1984) Math. Geol., 16_ 617. (6) Horonow,

A. & Butler, J.C., (1986) Comp. and Geos., in press.

FIGURE I. A plot of

the first two

principal components

for the trainin9

set of 35 basalt

analyses. Numbers

refer to specific

analyses which are

available as a

separate from the

author. Boundary

curves are empirical

and drawn to

isolate the tectono-
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BARBERTON GREENSTONE BELT VOLCANISM: SUCCESSION, STYLE, AND

PETROGENESIS; Gary R. Byerly and Donald R. Lowe, Department of

Geology, Louisiana State University, Baton Rouge, Louisiana 70803 USA

The Barberton Mountain Land is a small but remarkably well-

preserved and accessable early Archean greenstone belt along the

eastern margin of the Kaapvaal Craton of southern Africa. Although

there is some question about the role of structural repetition of

various units, detailed mapping in the southern portion of the belt

leads to the conclusion that a substantial thickness is due to original

deposition of volcanics and sediments (I). In the area mapped, a

minimum thickness of 12km of predominantly mafic and ultramafic

volcanics comprise the Komati, Hooggenoeg, and Kromberg Formations of

the Onverwacht Group, and at least one km of predominantly pyroclastic

and epiclastic sediments derived from dacitic volcanics comprise the

Fig Tree Group. Much greater apparent thicknesses of Fig Tree are due

to numerous structural repetitions. The essentially non-volcanic

Moodies Group lies conformably on top of the Fig Tree. The position

or correlation for the Sandspruit and Theespruit Formations relative to

the above units is not known. The Barberton greenstone belt formed

primarily by ultramafic to mafic volcanism on a shallow marine platform

which underwent little or no concurrent extension. Vents for this

igneous activity were probably of the non-constructional fissure type.

Large, constructional vent complexes were formed, and explosive

eruptions widely dispersed pyroclastic debris. Only in the final

stages of evolution of the belt did significant thrust-faulting occur,

generally after, though perhaps overlapping with, the final stage of

dacitic igneous activity.

The volcanic succession in the Barberton greenstone belt is often

used as a general model for greenstone belt stratigraphy (2). Previous

workers have suggested that volcanism there was cyclic, ultramafic to

mafic to felsic, on a scale that ranged from tens of meters to tens of

kilomet_ in stratigraphic thickness, with small cycles superimposed

on large cycles. In the grossest sense, the base of the sequence is

predominantly komatiitic and the top dacitic, but beyond this the

detail of volcanic succession is complex. Thin units of dacitic tuff

are recognized within the Komati Formation and komatiitic lavas are

interbedded with Fig Tree Group sediments. Simple, small-scale cycles

are not present. Sequences previously interpreted as small-scale

cycles are now known to represent thick, stratiform alteration zones of
mafic and ultramafic lavas to silicic rocks with a remarkably calc-

alkaline-like chemistry (3). Systematic increases in Si,K, and Rb

accompany decreases in Fe,Mg, and Ni, while AI,Ti, and Zr remain

constant from base to top in these cyclic units(4). Throughout these

alteration zones the flows typically have mafic volcanic textures and

structures, and are usually fine-grained and in places pillowed.

Preserved spinels in silicified rocks initially crystallized in mafic

or ultramafic lavas. After taking into account the nature of this

common style of alteration it appears there are no obvious systematic

trends in lava composition in the stratigraphic sequence. Notably,

however, the two thick sequences of dacitic volcanics seem to represent

prolonged volcanic episodes with no mafic or ultramafic activity.
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Komatiitic or basaltic igneous activity seems also to occur with
little or no other type of igneous activity in three or four thick
sequences.

Styles of igneous activity vary primarily as a function of lava
composition. Komatiites throughout the sequence occur as massive flows
with typical spinifex texturesor as thick flows that often display
cumulus-layered bases or as pillowed flows and only rarely as
hyaloclastite units. In most sections the flows are quite thin,
typically 50cm to 5m, and only rarely up to 50m. They are rarely
vesicular, suggesting deep water extrusion, but in several sections
interbedded sediments areof shallow-water origin. We have observed no
vent complexes for the komatiites, though they are relatively
widespread units. The komatiitic unit within the Hooggenoeg can be
traced for over 50 km of strike around the Onverwacht anticline. The
komatiitic unit beneath the Msauli Chert crops out over a similar
dlstance. Only in the uppermost komatiitic unit is there a local
lateral facies; here the lavas interfinger with shallow marine
sediments and were of more local extent, though again no vents are
recognized. Basaltic igneous activity is characterized by thick to
thin lava flows, in places pillowed or massive and 6nly rarely by
pillow breccias. Two separate basaltic sequences in the Hooggenoeg
Crop out for 50 km along the Onverwacht anticline. These lavas are

non-scoriaceous, but commonly contain up to 5% vesicles primarily as

radial vesicles about the margins of pillows. The lower basalts of the

Kromberg occur as a thick sequence of lapilli tuffs, especially thick

on the west limb of the Onverwacht anticline (5). These units are

locally crosscut by irregular dikes and sills of basalt, and in places

Contain blocks and bombs of both juvenile and accidental lithologies.

They appear to represent near-vent facies and were perhaps similar to

modern basaltic cindercone fields. •Some lithologies in this unit are

moderately scoriaceous. Laterally, these units are represented by

interbedded sediments and pillowed to massive lava flows. Dacitic

igneous activity is represented on two different scales: by the

relatively common tuffaceous units that occur throughout the section,

and by very thick sequences of lavas, pyroclastics, and epiclastics at

two locations in the sequence (i). Thin, typically a few tens of cm

but rarely to a few tens of m, tuffaceousunits occur throughout•the

sequence, and are usually completely altered to a micromosaic of quartz

and sericite. Textures are remarkably well preserved, however, and

indicate highly pumiceous particles often in the form of accretionary

lapilli commonly in graded airfall beds. These units are regionally

extensive, greater than 50 km strike length, but associated vent

complexes are not found. The two major dacitic units, at the top of

the Hooggenoeg and top of the Fig Tree, clearly represent vent

complexes. They form complex associations of lava flows or domes,

breccias, and tuffs hundreds of m thick. Along strike systematic

changes in lithologies can be recognized where sedimentary rocks

represent debris being shed off the constructional vent complex.

These units do not appear to be laterally • interbedded with more mafic
lavas.

Petrogenesis of Barberton greenstone belt volcanics is not likely

a single, one-stage process. Indeed, the succession of units and

common isolation of one compositional group from the others may even
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require a separate petrogenesis for komatiites, basalts, and dacites.
Komatiites from the top and the base of the sequence are remarkably
similar in composition (4,6,7). They are typical of komatiites
worldwide except for very low AI/Ti, very high Ti/V, and other ratios
that require a very depleted upper mantle source (6). Otherwise, most
compositional variation within the komatiitic suite seems consistent

with low-pressure fractionation of olivine, later joined by

clinopyroxene in komatiitic basalts. Basalts of the Hooggenoeg and

Kromberg Formations have typical tholeiitic compositions, including a

pronounced iron-enrichment and lack of alumina-enrichment, that can be

produced by low-pressure fractionation of plagioclase, clinopyroxene,

and olivine. Immobile trace elements and their ratios, such as very

low LREE/HREE, also require a depleted upper mantle source.

Compositional data are not inconsistent with a single liquid line of

descent of komatiites and basalts. While both komatiite and basalt

sequences suggest substantial low-pressure fractionation there is not

generally an adequate mass of layered intrusives to account for this

fractionation in situ. The Barberton sequence contains less than 5%

layered intrusives, yet basaltic komatiites and Fe-rich basalts each

require 50% or more fractional removal of crystalline phases from their

parental melts which must have taken place beneath the present level of

the greenstone belt. Dacites are the only intermediate to silicic

magmatic rocks found. They range from 60-70% SiO2, 15-16% A1203, and

have Na20/K20 ratios of about 3 in the freshest samples and are thus

trondjhemitic in character. They display extreme fractionation of LREE

to Y, and have very high concentrations of highlyincompatible elements

such as U and Th. Plagioclase and hornblende are the major phenocryst

phases in all dacites. Some also contain either quartz or biotite as!

phenocrysts. Their compositions suggest a source that was mafic in

composition and a relatively small degree of partial melting of an

assemblage dominated by amphibole. They are not related to associated

basalts by any simple, one-stage magmatic process, though could be

related to a second stage of igneous activity at the base of a thick,

hydrated pile of mafic volcanics.
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TECTONIC SETTING AND EVOLUTION OF LATE ARCHEAN GREENSTONE
BELTS OF SUPERIOR PROVINCE, CANADA: K.D. Card, Geological Survey
of Canada

Late Archean (3.0-2.5 Ga) greenstone belts are a major component of the Superior
Province of the Canadian Shield where alternating, metavolcanic - rich and
metasedimentary - rich subprovinces form a prominent central striped region bordered in

part by high-grade gneiss subprovinces, the Pikiwitonei and Minto in the north, and the
Minnesota River Valley in the south. The high-grade gneiss subprovinces are

characterized by granulite facies gneiss of plutonic and supracrustal origin, and by
abundant plutonic rocks. Minnesota River Valley has rocks older than 3.5 Ga; absolute
ages of Pikiwitonei and Minto rocks are unknown but Minto does have north-south
structural trends distinctive from the dominant east-west structures of Superior
Province.

Volcano-plutonic subprovinces of

Superior Province consist of generally narrow

sinous greenstone belts bordered and intruded

by voluminous plutonic rocks, including

tonalitic gneiss, synvolcanic plutons, and

younger foliated to massive, generally
composite plutons, ranging from quartz
diorite to granite and syenite. Supracrustal
rocks of the greenstone belts include
komatiitic, tholeiitic, calc-alkalic, and rare
alkalic volcanics with volcanogenic clastic
(wacke, conglomerate) and chemical (iron
formation, chert) sediments. Most

greenstone belts consist of several lensoid,
overlapping piles each on the order of I00 km
in maximum dimension and approximately 5
to I0 km thick and commonly comprising-_-----__
several volcanic cycles. Some cycles cons,st of a lower komatiitic -tholeiiti-c--basalt

sequence, a middle tholeiitic basalt -andesite sequence, and an upper calc-alkallc dacite-
rhyolite-andesite sequence. Other cyles are bimodal tholeiitic basalt-dacite (rhyolite)
sequences. Minor alkalic and shoshonitic volcanics and associated alluvial/fluvial
sediments are present in some belts where they unconformably overlie older volcanics
and synvolcanic plutons. In term of rock types, sequences, and overall configuration,

many Superior Province greenstone belts are comparable to modern island arcs.

Superior Province greenstone belts typically have upright folds with curved,
bifurcating axial surfaces, steep foliations and lineations, and major domal culminations
and depressions, the products of polyphase deformation. Some belts, however, display
low angle foliations and faults, overturned sequences, and recumbent and downward -
facing structures suggestive of thrust-nappe style tectonics (1,5,10).

The enclosing gneissic and plutonic rocks display domal structural patterns, again
the product of polyphase deformation involving recumbent folding and diapirism.
Metamorphic grade in the greenstone belts is generally subgreenschist to greenschist in
the central parts grading outward to low pressure amphibolite facies in belt margins and
surrounding plutonic gneisses.
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The contacts between greenstone belts and enclosing plutonic rocks) and between
the greenstone-rich subprovinces and adjacent plutonic subprovinces are generally either

intrusive or tectonic. An unconformity between .greenstones and older granitoid rocks
has been demonstrated only at Steeprock, Ontario(5) and although younger volcanics and

older plutonic rocks are juxtaposed in a number of places, faults, mylonites, or shear
zones invariably intervene. Dextral transcurrent faults trending EW and NW and sinistral
faults trending NE form subprovince boundaries in part, as do NE and EW trending
thrusts. One notable product of this faulting, the Kapuskasing Structural Zone, exposes
granulites considered to represent upthrusted lower crust (7,8). Late alkalic volcanic -
fluviatile sediment sequences are spatially related to major transcurrent faults and may
represent deposition in pull-apart basins formed by alternating periods of transtension
and transpression in strike-slip zones.

Interpretation of geophysical data

shows changes in depth to the Conrad
Discontinuity and to the Moho from one
subprovince to another, indicating
significant structural relief across their
faulted boundaries (4). Greenstone belts of

Abitibi and Wabigoon subprovinces generally
extend to depths of only 5 to I0 kin(3)
whereas metasedimentary gneisses of
English River Subprovince and plutonic
rocks of Winnipeg River Subprovince may
extend to depths of 10 to 20 kin(4).
Juxtaposition of high-pressure granulites of
the Kapuskasing zone with low-pressure
greenschist-amphibolite facies rocks of
Abltibi Subprovince implies structural relief
of 15 to 20 km across the boundary thrust
(7,8).

Metasedimentary subprovinces
(English River, Quetico, Pontiac etc.)
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consist mainly of turbidite wacke and pelite metamorphosed at grades ranging from low

greenschist at belt margins to upper amphibolite and locally) low-pressure granulite in
belt interiors. Anatectic, s-type granitic rocks are prevalent in the migmatitic, high-
grade interiors of the metasedimentary belts. Most metasedimentary subprovinces have
a linear aspect attributable to transcurrent boundary faults and isoclinal folds with
subhorizontal to subertical axes) late structures superimposed on earlier complex,
recumbent folds and dome-basin structures. In areas where contacts between

metasedimentary and volcano-plutonic subprovinces are unfaulted, there appear to be
rapid facies transitions from sedimentary to dominantly volcanic sequences. Preliminary
isotopic age data also indicate that the sedimentary and volcanic sequences of some
adjacent subprovinces are broadly coeval.

U-Pb zircon dates demonstrate that volcanic) plutonic, deformational, and
metamorphic events of relatively brief duration affected large parts of Superior
Province and that there are detectable differences in ages of these events from one area
to another(6). In the northwest (Sachigo, Berens, Uchi subprovinces) major volcanism and
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accompanying plutonism occurred at about
3.0 to 2.9 Ga, 2.85 to 2.80 Ga, and 2.75 to
2.7 Ga. These voclanic episodes were
followed by major deformation,
metamorphism, and plutonism about 2.73 to
2.7 Ga. In the south (Wabigoon, Wawa,

Abitibi subprovinces) volcanism and
plutonism occurred mainly between 2.75 and
2.69 Ga, followed by major deformation,
metamorphism, and plutonism at about 2.70
to 2.66 Ga. There isevidence for somewhat

younger (2.65 to 2.63 Ga) metamorphic-

plutonic events, or of later closure of
isotopic systems, in the high-grade rocks of

the metasedimentary belts and of the

Kapuskasing zone.

U-Pb ZIRCON AGES (MO_

\

In summary, Superior Province

consists mainly of Late Archean

supracrustal and plutonic rocks with Middle ""

and Early Archean gneisses in the south and

possibly in the north. The Late Archean
supracrustal sequences are probably mainly of oceanic or marginal oceanic affinity

(islandarc, marginal basin, submarine plateaus), although continental arc and riftzone

settings have also been postulated(2). Abundant plutonic rocks include early synvolcanic

intrusionsand later synorogenic and post-orogenic intrusions derived in part from the

mantle and in part from crustal melting caused by thermal blanketing of newly-thickened

continental crust combined with high mantle heat flux. Some pre-greenstone plutonic

rocks may represent accreted microcontinents.

The contemporaneity of magmatic and deformational events along the lengths of

the belts,coupled with the structural evidence of major compression and transcurrent

faulting,isconsistent with a subduction-dominated tectonic regime for assembly of the
Superior Province orogen. Successive lateraland vertical accretion of volcanic arcs and

related sedimentary accumulations, accompanied and followed by voluminous plutonism,

resulted in multi-stage crustal thickening and stabilizationof the Superior craton prior

to emplacement of mafic dyke swarms and Early Proterozoic marginal rifting.
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HIGH PRECISION U-PB GEOCHRONOLOGYAND IMPLICATIONS FOR THE TECTONIC
EVOLUTION OF THE SUPERIOR PROVINCE; D.W. Davis, F. Corfu, and T.E. Krogh,
Jack Satterly Geochronology Laboratory, Royal Ontario Museum, I00 Queen's
Park, Toronto, Ontario. M5S 2C6

The underlying mechanisms of Archean tectonics and the degree to which
modern plate tectonic models are applicable early in earth's history
continue to be a subject of considerable debate. A precise knowledge of the
timing of geological events is of the utmost importance in studying this
problem. The high precision U-Pb method has been applied in recent years to
rock units in many areas of the Superior Province. Most of these data have
precisions of about ± 2-3 Ma. The resulting detailed chronologies of local
igneous development and the regional age relationships furnish tight
constraints on any Archean tectonic model.

Superior province terrains can be classified into 3 types:
I) low grade areas dominated by meta-volcanic rocks (greenstone belts).
2) high grade, largely metaplutonic areas with abundant orthogneiss and

foliated to massive 1-type granitoid bodies.
3) high grade areas with abundant metasediments, paragneiss and S-type

plutons.
Most of the U-Pb age determinations have been done on type i terrains

with very few having been done in type 3 terrains.
A compilation of over 120 ages indicates that the major part of igneous

placti : ...... ' .... _,,_ peri^_ _:_ _ u_ ,......... _^ v ...........v,_y _uu_ a_= in _- vu :,uv-:u,u ,.,a, _,,v,,, a_ _,,= ,\=,,v,_,, =,=,,_.
This event was ubiquitous throughout the Superior Province.

There is, however, abundant evidence for the widespread occurrence of
pre-Kenoran volcanoes and sialic crust, especially north of the Wabigoon-
English River subprovince boundary. In the Uchi and Sachigo subprovinces
there are volcanic periods about 3000-2900 Ma (2,3) and 2850-2800 Ma (2,3)
in age which underlie the Kenoran sequence. The Kenoran rocks are in part
disconformable on the older sequences. The general absence of angular
unconformities along with other evidence such as the presence of mature
sandstones in the Sachigo subprovince (4), implies an extended period of
crustal stability preceding the Kenoran event. Tonalites 2950-3200 Ma in
age are found in the Favourable Lake (5), North Spirit Lake (3) and Winnipeg
River Belts (6,7,8), suggesting a pre-Kenoran crust-forming event at about
3000 Ma. Evidence for the existence of an extensive pre-Kenoran continent
is especially strong in the Winnipeg River Belt, a type 2 terrain. Recent
data obtained from a type 2 terrain in the Wabigoon subprovince also
indicates 3000 Ma volcanic and plutonic sequences (9). This indicates that
type 2 terrains in many cases include pre-Kenoran crust, and that pre-Kenoran
crustal material may be locally present in type 2 areas throughout the
Superior Province.

The earliest Kenoran magmatism consisted of eruption of tholeiitic
basalt platforms. These are difficult to date but in some areas pre-date
2750 Ma (i0). Intermediate-felsic calc-alkaline volcanism occupied a time
span from about 2750-2700 Ma and led to the construction of large composite
volcanoes. The transition to calc-alkaline volcanism was associated with the
emplacement of layered basic intrusions and contemporaneous tonalite-
granodiorite plutons, without major deformation. This was followed by the
intrusion of high alumina trondhjemite-granodiorite plutons, in some cases
accompanied by later calc-alkaline volcanism. This resulted in the develop-
ment of large intravolcanic batholiths (ii). Significant regional
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deformation began relatively late, at about 2700 Ma over much of the Superior
Province. In some areas, such as the Wabigoon greenstone belt, it
significantly post-dated the bulk of calc-alkaline intrusive and volcanic
activity (12).

Some greenstone belts underwent at least two periods of deformation.
A DI event affected the calc-alkaline sequences and pre-dated sedimentation
and eruption of alkaline volcanic rocks (e.g. Tamiskaming sequence). The
Tamiskaming-type sequences were then affected by a later deformational (D2)
event. The ages of the late sequences and the D2 event are bracketed
between 2695 and 2685 Ma in the southern Wabigoon and Shebandowan sub-
provinces (13), but may have been 15-20 Ma earlier in the Oxford Lake belt in
the northern Superior Province.

The causes of regional deformation are unclear. It may have been partly
the result of diapiric remobilization of the intravolcanic batholiths (e.g.
Wabigoon greenstone belt), accompanied by regional compression, perhaps due
to the intrusion of marginal late granitoid plutons (e.g. Batchawana belt)
(14). The presence of nappe structures in some areas such as the Winnipeg
River belt (15) and the southern Wabigoon subprovince (16) further
complicates the tectonic picture. The final expression of strain was the
establishment of large strike-slip faul_, which often separate type i from
type 2 and type 3 terrains.

The deformational event was accompanied by intrusion of late tectonic
plutons, most of which have ages in the range 2700-2670 Ma (17). This
resulted in cratonization and brought the Kenoran event to an end. Locally,
single volcanic centers passed through this cycle from initial volcanism to
terminal deformation in time spans as short as 30 Ma (18).

Although there is some indication of a secular younging in the peak of
Kenoran igneous activity in a N-S direction, the broad simultaneity and short
time spans of crustal events argue against any simple model for growth of the
Superior Province by accretion of island arcs (19). Furthermore, there is a
strong vertical control on magmatic and metamorphic ages. The oldest Kenoran
plutons occur high in the crust while the youngest plutons and metamorphic
ages are found at deeper crustal levels in more uplifted and eroded terrains
such as the Berens River subprovince, parts of the Winnipeg River belt and
the Kapuskasing structural zone (20).

Despite considerable work on the felsic units in type I greenstone
terrains, there is almost no evidence of inherited zircon components derived
from significantly older sialic material. The intravolcanic granitoid rocks
and thick felsic volcanic sequences were largely derived by differentiation
processes from mafic precursors within the period of Kenoran activity (II).
However, greenstone belts evidently did develop adjacent to older sialic
blocks. Evidence for this, found in the Wabigoon greenstone belt, includes
pre-Kenoran granitoid clasts in a conglomerate marginal to the belt and the
existence of marginal unconformities between 3000 Ma tonalite in the Winnipeg
River belt and Kenoran volcanic and plutonic sequences (7). Abundant mafic
dykes intrude the older units below these unconformities and indicate a
tensional stress regime.

The bulk of the evidence presently available argues for a model in which
greenstone belts were initiated by rifting of older sialic crust and the
formation of narrow ocean basins. The fault controlled nature of many
subprovince boundaries as well as the fact that volcanism was at times nearly
coeval throughout the Superior Province suggests that rifting may have been
concentrated along major early lithospheric breaks.
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Evidence for subduction in late Archean tectonic processes is missing.
The absence of an effective subduction mechanism would have inhibited ocean

spreading. If the intracratonic rifts were not able to open into wide ocean

basins they would have been reworked in place, undergoing dominantly vertical

tectonic processes. Continued mantle-derived mafic magmatism may have led to

thickening and differentiation of the crust to produce the large amounts of
calc-alkaline material now present in type 1 terrains.

Any model for tectonic development can only be tentative and subject to

the constraints of a constantly expanding data set. Some of the major

questions remaining for geochronology are the extent in time and space of

pre-Kenoran material and its deformational history and the origin and

basement of the metasedimentary belts. These questions can only be resolved

by much more extensive work in type 2 and type 3 terrains.
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CRUSTAL STRUCTURE OF THE ARCHEAN GRANITE-GREENSTONE TERRANE IN THE

NORTHERN PORTION OF THE KAAPVAAL CRATON; J.H. de Beer (NPRL, CSIR, P.O. Box

395, Pretoria 0001, S. Africa), E.H. Stettler (Geological Survey, Private Bag

X112, Pretoria 0001, S. Africa), J.M. Barton Jr., D.D. van Reenen and J.R.

Vearncombe (Dept. of Geology, RAU, P.O. Box 524, Johannesburg 2000, S. Africa)

Recent investigations of the electrical resistivity, gravity and aeromag-

netic signatures of the various granite-greenstone units in the northern por-

tion of the Kaapvaal Craton have revealed three features of significance:

I) The Archean greenstone belts are shallow features, rarely exceeding

5 km in depth;

2) The high resistivity upper crustal layer typical of the lower-grade

granite-greenstone terranes is absent in the granulite facies terrane,

and

3) The aeromagnetic lineation patterns allow the granite-greenstone ter-

rane to be subdivided into geologically recognizable tectono-metamor-

phic domains on the basis of lineation frequency and direction.

In the Pietersburg, Sutherland and Murchison Greenstone Belts, geoelect-

rical investigations showed that the greenstone lithologies have a lower re-

sistivity than the surrounding granitoid terranes. Positive gravity anomalies

over the greenstone belts are related to more dense metamorphosed ultramafic

and mafic rocks in the Belts compared to surrounding granitoid rocks. Numerical

modelling of the geophysical data indicates that the greenstone belts are asym-

metrical structures, being thicker along the southeastern flanks. The belts

are underlain by h_gh resistivity, low density granitoid rocks of which two

types are distinguished by their average densities:

I) a lower density series (density = 2 600 kg/m) corresponding to 2650 Ma

granodioritic plutons and

2) a higher density series (density = 2 670 kg/m) comprising the older

tonalitic and trondhjemitic gneisses.

The younger series is particularly well developed along the southern margins of

the greenstone belts and occurs locally along the northern margins. Primary

layering and tectonic fabrics within the greenstone lithologies are subvertical.
Thicknesses measured across layering exceed the depth of the belts, suggesting

no simple rotation of the greenstone lithologies but instead a truncation at

shallow depths of structurally repeated (folded and imbricated) greenstone

belts. These truncations may,be major recumbent deformation zones, recumbent

syntectonie granitoid intrusions or a late intrusive contact,

Deep resistivity soundings indicate significant changes in the regional

structure of the crust in the northern portion of the Kaapvaal Craton corres-

ponding to changes in metamorphic grade and tectonic style. In the low-grade

granite-greenstone terrane, the upper 10 km or less of the crust is sharacter-

ized by high-resistivity rocks (approximately 100 000 ohm metre) overlyinga

more conductive layer (approximately 5 000 ohmmetre) toJa depth of about 35

km. Below this depth, possible mantle rocks with a resistivity of about 50

ohm metre occur. Where the granulite facies of the Southern Marginal Zone of

the Limpopo Belt occur, the approximately 100 000 ohm metre layer is absent and

rocks with a resistivity of about 5 000 ohm metre extend to a maximum depth of

about 35 kmwhere they overlie possible mantle rocks. Work in progress indi-

cates that in the vicinity of the orthoamphibole isograd marking the southern

boundary of the Southern Marginal Zone, the high-resistivity upper crustal

layer characterizing the low-grade terrane to the south dips northward under-

neath the moderately resistive high-grade rocks with lower crustal signatures.
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This relationship is consistent with a crustal model in which the lower crustal
rocks of the high-grade terrane have over-ridden the upper crustal rocks of the

low-grade terrane. Some of the gravity models calculated for the Sutherland

Greenstone Belt are also in agreement with such a tectonic model. At this

stage of the research, it is not clear how the limited seismic data and iso-

static gravity data relate to such a structural model.

The aeromagnetic lineation pattern in the northern portion of the Kaap-

vaal Craton can be divided into distinct domains on the basis of the lineation

frequency and direction. Although these magnetic anomalies are due to mafic

and ultramafic dykes, they reflect an inherent fabric in the crust. The do-

main boundaries correspond to known tectonic and/or metamorphic transitions.

One such boundary is the orthoamphibole rehydration isograd that marks the

transition between the granulite facies terrane of the Southern Marginal Zone

and the lower-grade rocks to the south. It is clear that the lineation pat-

tern does not reflect the different lithological units in the area and the

Sutherland and Pietersburg Greenstone Belts are, for example, not reflected

in the aeromagnetic lineation pattern. This suggests that these greenstone

belts are internal components of certain domains and do not mark domain

sutures.
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FELSICVOLCANICLASTICROCKSIN THE3.3 TO3.5 Ga WARRAWOONAGROUP,
PILBARABLOCK,WESTERNAUSTRALIA:DEPOSITIONALSETTINGANDCRUSTAL
EVOLUTION;DiF_rco, M.J., and Lowe, D.R., Dept. of Geology, Louisiana State
University, Baton Rouge, LA 70802USA

The 3.3 to 3.5 Ga CoonganFormation (i), a newly identified, predomin-
antly volcaniclastic unit in the eastern Pilbara Block, Western Australia,
records sedimentation patterns associated with the development of felsic
volcanism and provides important information on early terrestrial crustal
evolution. The CoonganFormation is divided into three members: The Duffer
and PanoramaMembersand the Strelley Pool Chert. The Duffer Member, former-
ly knownas the Duffer Formation (2,3), is the oldest and volumetrically
greatest memberof the CoonganFormation and consists of felsic volcaniclas-
tic rudite and felsic lava with lesser amounts of turbiditic tuff, tuff-
breccia, and chert. The Duffer Memberis overlain by or interfingers in its
upper part with the PanoramaMember, formerly knownas the PanoramaForma-
tion (2,3), consisting predominantly of silicified volcaniclastic arenite
with lesser amounts of felsic tuff, silicified lutite, chert, felsic lava,
chert-clast conglomerate, volcaniclastic rudite, and barite. The Duffer and
PanoramaMembersare overlain unconformably (i) by the Strelley Pool Chert
(4), which represents silicified orthochemical and biogenic sediments.

Rocksof the Duffer Memberrepresent volcaniclastic sedimentation on
coarse debris-aprons that flanked felsic volcanic centers. These aprons are
madeup primarily of debris-flow deposits with lesser amounts of intercal-
ated turbidites. Most of the debris-aprons were subaqueous features, but,
locally, they are capped by sequences of alluvial conglomerate, indicating
that they shoaled upward with time. Predominantly arenaceous strata of the
PanoramaMemberrepresent reworked, and to a lesser extent, direct-deposited
pyroclastic debris that was dispersed to a spectrum of shallow-water and
subaerial environments. Tephra production during Panoramatimes was pro-
bably related to the generation of increasingly more evolved magmasduring
the later stages of felsic volcanism (5,6). Evidence of several features
typical in continental felsic volcanic provinces, including caldera com-
plexes and thick sequences of ash-flow tuffs, was not seen in the Duffer
and PanoramaMembers.After a period of uplift and erosion, orthochemical
and biogenic sediments, represented by the Strelley Pool Chert, were depos-
ited on a broad, post-volcanic platform.

Clastic rocks of the CoonganFormation indicate derivation from a
largely felsic volcanic provenance. Clasts in rudite of the Duffer Member
consist predominantly of felsic volcanic rock. Locally, a few rudite units
contain sparse clasts of chert. Frameworkmodesof arenites of the Panorama
Memberconsist mainly of altered felsic volcanic rock fragments with sub-
ordinant amounts of volcanic quartz, chert, and pseudomorphsafter feldspar
and minor amounts of altered mafic volcanic rock fragments and pseudomorphs
after mica and amphibole. No evidence for detrital contributions from gran-
itic sources was found in the Duffer and PanoramaMembers. In addition to
the predominant felsic volcanic provenance, minor contibutions were received
from mafic volcanic and local sedimentary sources.

Paleocurrent evidence, mainly from cross-bedded arenites and imbricate
conglomerates in the Duffer and PanoramaMembers, indicate sediment disper-
sal from several felsic source areas close to the present location of gran-
itic plutons that crop out between greenstone belts in the eastern Pilbara.
These data support earlier proposals, based primarily on geochemical and
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and isotopic data (6,7), that someof the granitic plutonic rocks and felsic
volcanic rocks in the eastern Pilbara are coeval. These felsic centers were
apparently randomly distributed, unlike those in manymodernvolcanic arcs.

Despite earlier suggestions of a primordial, pre-greenstone granitic
crust (2), no direct evidence for rocks older than the WarrawoonaGrouphas
been reported. The lack of evidence for detrital contributions from plutonic
sources in the Duffer and PanoramaMembersindicates that the granitic rocks
were not yet exposed in Coongantimes. The petrographic and paleocurrent
evidence presented here coupled with earlier geochemical and isotopic work
(6,7) suggest that the felsic volcaniclastic and volcanic rocks of the Coon-
gan Formation represent the volcanic componentof evolving granitic pluton-
ism and the earliest manifestation of cratonization in the eastern Pilbara
Block. Granitic intrusion culminated with tectonism and exposure of the
plutons during Gorge Creek times, when sediments containing granitic detrit-
us were deposited (2,3,7).
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MAFIC-ULTRAMAFIC ROCKS OF THE BARBERTON GREENSTONE BELT. M.J. de Wit, Lunar and

Planetary Institute, 3303 NASA Road One, Houston, TX 77058 and BPI Geophysics,

University of the Witwatersrand, Johannesburg, South Africa.

The simatic rocks (Onverwacht Group) of the Barberton greenstone belt,

which occur in at least 3 regional thrust nappes, are part of the Jamestown

ophiolite complex 1. This ophiolite, together with it's thick sedimentary

cover (Fig Tree and Moodies Groups) occupies a complex thrust belt. Field

studies have identified two types of ea__faults which are entirely confined to
the simatic rocks and are deformed by the later thrusts and associated folds.

The first type of fault (Fla) is regional and always occurs in the simatic rocks

along and parallel to the lower contacts of the ophiolite-related cherts (Middle

Marker and equivalent layers; for their distribution see Fig. 1, de Wit et al.,

this volume). These faults zones have previously been referred to both as
flaser-banded gneisses 2 and as weathering horizons 3. (F1a) zones consist of

anastomosing, cross-cutting and folded extension veins which have internal

cross-fibrous growth textures. Vein filling minerals are predominantly calcite,

less often quartz. The veins are separated by schistose to proto-mylonitic

folia of fuchsite, chlorite, sericite and serpentines (Fig. 1). In general the

zones range between 1-30m in _h_ckness. The veins formed by a succession of
dilation-diffusion increments_, b and subsequently deformed during simple shear

to form banded gneisses (Fig. 1; in this poster presentation, polished slabs of
these rocks wi!1 be displayed). The simatic host rocks close to (F1a) zones,

are ubiquitously brecciated and extensively altered (carbonatized and/or

silicified) as documented by the major elements, stable and radiogenic isotope
compositions (REE are relatively stable). This alteration is related to a

extensive hydrothermal-fluid/rock interaction. It has been postulated that the

dilatancy-anisotropy of the fault zones was related to a hydraulic
fracturing-gliding mechanism in a geothermal environment 6. Episodic decrease

of fluid overpressure due to movement in these zones would cause boiling,

calcite precipitation and crack2sealing with a concomittant resistance to
movement of the cherty cap-rock Q. Displacements along these zones are
difficult to estimate, but may be in the order of 1-10 _ km. The structures

indicate that the faults formed close to horizontal, during extensional shear

and were therefore low angle normal faults. In many areas, both the faults and

their overlying cherts, are cut by subvertical simatic intrusions of the

Onverwacht Group (Fig. 2). Thus (Fla) zones overlap in age with the formation

of the ophiolite complex. The second type of faults (Flb) are vertical
brittle-ductile shear zones, which crosscut thecomplex at variable angles and

cannot always be traced from plutonic to overlying extrusive (pillowed) simatic

rocks. (Flb) zones are therefore also apparently of penecontemporaneous origin
with the intrusive-extrusive igneous processes (Fig. 2). Thus (Fib) zones may

either represent transform fault-type activity or represent root zones

(steepened extensions) of (Fla) zones. Both fault types indicate extensive

deformation in the rocks of the greenstone belt prior to compressional

overthrust tectonics, and at least (Fla) implies regional extensional tectonics

and probably block rotation during the formation of the ophiolites.
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New field observations and structurally restored geologic sections through

the southern part of 3.5-3.6 Ga Barberton greenstone belt (Fig. I) show that

it's mafic to ultramafic rocks form a pseudostratigraphy comparable to that of

Phanerozoic ophiolites; we refer to this ancient ophiolite as the Jamestown

ophiolite complex 1. It consists of an (in part sheeted, Fig. 2)
intrusive-extrusive mafic-ultramafic section, underlain by a high-temperature

tectono-metamorphic residual peridotitic base, and is capped by a chert-shale

sequence which it locally intrudes. Geochemical data support an ophiolitic

comparison (Fig. 3). Fractionation of high temperature melting PGE's (>
2500oc) in the residual rocks suggest a lower mantle origin for the precursors
this crust 2. An oceanic rather than arc-related crvstal section can be

inferred from the absence of contemporaneous andesiles. This ancient simatic
crust was thin (<3 km), contains a large ultramafic component (----25%),is

pervasively hydrated (> 95%) with HoO conteqt_ ranging between 1-15% and
consequently has a low density (--2167 g/cm_) _.

The entire simatic section has also been chemically altered during its

formation by hydrothermal interaction with the Archaean hydrosphere (Fig. 4).

Only an igneous "ghost" major element geochemistry is preserved. This

regionally open-system metasomatism may have increased the MgO content of the

igneous rocks by as much as 15%. The most primitive parent liquids, from which

the extrusive sequence evolved, may have been "picritic" in character. Rocks
with a komatiitic chemistry may have been derived during crystal accumulation

from picrite-crystal mushes (predominantly olivine-clinopyroxene) and/or by
metasomatism during one or more subsequent episodes of hydration-dehydration

(Fig. 5).
The Jamestown ophiolite complex provides the oldest record with evidence

for the formation of oceanic lithosphere at constructive tectonic boundaries.

Our observations are in agreement with models predicting higher oceanic Archean

heat flux per unit ridge length than today, associated with deep mantle diapiric

upflow. Because of its low density, this ophiolite resisted subduction during
subsequent tectonism; it was obducted to form part of a thrust complex 3.
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Captions: (I) Simplified geological map of an area in the southern part
Barberton greenstone belt studied between 1978 and 1985. (2) Vertical

sheeted intrusives with pale chilled margins from a 30 meter river outcrop

(exposed during 1984 draught) at locality A, Fig. I. Note the remnant chert

xenolith (a; arrow). (b) clearly depicts the splitting in_o of an earlier

intrusion (1) by a later one (2). (3) Representation of d'_O (a) of the
Barberton rocks (black) plotted in their restored pseudo-stratigraphic sequence

compared to Phanerozoic ophiolites and oceanic crust (open s_bols) (b) REE data

from Barberton; this plot compares favourably with Phanerozoic ophiolites and

oceanic crust. (4) Binary correlation plots of MgO, CaO, SiO, and H20 for

rocks of oceanic crust (open symbols) and from the Jamestown ophioli_e comp]ex

(closed symbols). These plots i]]ustrate the close correlation between the
major oxides concentrations and the degree of hydration in these environments.
For comparison, the slopes of the chemical flux in the Galapages hot spring

fluids are also shown. (5) This figure shows that the bulk rock MgO/MgO + Feo
ratio of Barberton Komatiites are enriched in MgO over that of the original

melt. The enrichment may be the result of either crystal accumulation or
magnesium metasomatism during hydrothermal alteration; there is textural

evidence that both mechanism were important. At any rate the plot clearly shows
that the MgO composition of the silicate liquids which formed the Barberton

Komatiite was between that of Gorgona Is]and (15-22% MgO) and Alexo (28% MgO),

and may have been of picritic composition. All diagrams from reference i.
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FELSIC IGNEOUS ROCKS WITHIN THE BARBERTON GREENSTONE BELT: HIGH

CRUSTAL LEVEL EQUIVALENTS OF THE SURROUNDING TONALITE-TRONDHJEMITE TERRAIN,

EMPLACED DURING THRUSTING. M.J. de Wit, Lunar and Planetary Institute, 3303

NASA Road One, Houston, TX 77058 and BPI Geophysics, University of the

Witwatersrand, Johannesburg. A.H. Wilson, University of Natal,
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Felsic rocks within the 3530 + 50 myrslsimatic rocks of the Onverwacht

Group of the Barberton greenstone Pelt have traditionally been mapped as

recurring volcanic units within a continuous stratigraphic succession. In the

past, these felsic units have been interpreted to be part of several mafic to

felsic volcanic cycles within this sequence. Some of these silicic layers have
been shown to be silicified simatic rocks2, 3. Our field data (Fig. 1)

indicates that the genuine felsic igneous rocks are predominantly shallow level

intrusives and subsurface felsic domes associated with only minor volcanics and
volcanoclastics. A 3.360 + I myrs (U-Pb, zircon)4 age from the main felsic

intrusion indicates that its emplacement post-dated the simatic rocks of this

greenstone belt between 120-220 myrs. Our geochemical results also show that
the felsic igneous rocks are not directly related to the mafic-ultramafic rocks

of the Onverwacht Group. On the contrary the major trace and REE data (Fig. 2)

all indicate that these felsic units are high-level equivalents of the

widespread, and time-equivalent, trondhjemite-tonalite plutons which either

intrude the lower parts of the greenstone belt, or with which they are in
tectonic contact.

Structural and stratigraphic analysis indicates that the felsic intrusions

were emplaced along thrusts during sedimentation and a prolonged period of

horizontal compressional stress exerted on the greenstone belt (Fig. 3). Thus,

integrated, the data suggest that the simatic rocks of the Barberton greenstone

belt were thrust across an actively stoping plutonic environment and that the

greenstone belt is at least partly allochthonous (Fig. 4).
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: (I) Simplified geological map of the southern part of the

on greenstone belt, showing location of main silicic (felsic) rocks. (2)

(a) Statistica| analysis of major element data from the felsic igneous rocks

within the study area, compared to those of the surrounding tonalite and
trondhjemites. The felsic igneous rocks are clearly divided into two groups (I

and If) in which both extrusive (ex) and intrusive (in) samples are represented.
The two groups are geochemically similar to the trondhjemites (thin frequency

boxes) and tonalites (bold frequency boxes) (b) Chondrite normalized REE

patterns of intrusive and extrusive representatives of both groups of felsic

igneous rocks from within the greenstone belt, compared to the granitoid plutons
surrounding the greenstone belt.
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(3) Schematic representation of the

tectonic-intrusive emplacement of the felsic igneous rocks as composite sills

close to the interface between the mafic-ultramafic (simatic) rocks of the

Onverwacht rocks (diagonal lines) and the overlying Fig Tree-like silts-shales.

Note how the lower contacts of the sills are predominantly tectonic (thrusts)
whilst the upper contacts are predominantly preserved igneous contacts. (4)

Plan and section of the Barberton greenstone belt (black) and the surrounding
granitoid terrain (white). The map shows the generalized D_ tectonic
transport directions, the felsic igneous rocks internal to the greenstone belt,

and the gneissose fabric in the surrounding tonalite-trondhjemite plutons. Note

that large scale stoping of the greenstone belt by the surrounding and intruding
granitoids is suggested by the outcrop pattern of the felsic igneous rocks

(eg. compare this pattern to the shape and outline of the Stentor pluton). The

section schematically shows the lower parts (3-5 km) of the greenstone belt

thrust over the granitoid terrain--w-hTlstthe latter syntectonically intrudes and
engulves the greenstone belt: this process is thought to have formed

recumbent-like mantle-gneiss folds (probably sheath-like in 3-dimentions).

Regional disruption and stoping of the greenstone belt occurs during intrusion
of Na-rich felsic phases from the plutons of the granitoid terrain into the

greenstone belts, along thrusts generated during the tectonic emplacement of the

entire greenstone belt. The section represents a restoration prior to
subsequent horizontal flattening which later deformed and rotated the rock units

and their contacts into a pseudo-synformal structure. All diagrams from de Wit,
Wilson and Armstrong (1985 under review).
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HEAT FLOW £ND HEAT GENERATION IN GREENSTONE BELTS; Malcolm J.

Drumy, Earth Physics Branch, Energy, Mines and Resources Canada, 1
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Heat flow has been measured in Precambrian shields in both greenstone

belts and crystalline terrains. Values are generally low, reflecting the

great age and tectonic stability of the shields; they range typically

between 30 and 50 mW/m2; although extreme values of 18 and 79

mW/m 2 have been reported (1,2). For large areas of the earth's

surface that are presumed to have been subjected to a common

thermotectonic event, plots of heat flow against heat generation appear

to be linear (3,4), although there may be considerable scatter in the

data. The relationship is expressed as:

Q = Qo + D A o [I]

in which Q is the observed heat flow, A o is the measured heat

generation at the surface, Qo is the "reduced" heat flow from the

lower crust and mantle, and D, which has the dimension of length,

represents a scale depth for the distribution of radiogenic elements.

Most authors have not used data from greens±one belts in attempting to

define the relationship within shields, considering them unrepresentative

and preferring to use data from relatively homogeneous crystalline rocks,

e.g. (5).

The heat generated by radioactive decay is expected to be less in

basic than in acidic rocks because of their different chemistry. Hence

we would expect heat flow in greens±one belts to be lower than that in

adjoining crystalline areas if the greens±ones are thick, but to be

similar if the belts are merely superficial. Table 1 is a compilation of

data from seven Precambrian shields. Only those data specifically

identified as being from greens±one belts, or those for which geological

descriptions are unambiguous, are used in column 2. There is the

possiblity that some of the data identified as being from crystalline

areas are in fact from greens±one belts.

Table I. Compilation of heat flow data for Preeambrian shields, listed

according to geological setting. The ratio in column 4 is that of the

mean heat flow in the greens±one belts to that in crystalline areas of

the shield.

Shield Mean and 1 s.d. heat flow (mW/m 2)

All sites Greens±ones

Canadian*a 42±8 (22) 39±5 (8)

Canadian *b 43±10 (I0) 40±9 (6)

Baltic c 40±6 (26) 41±6 (4)

W. African d 36±12 (19) 35 (I)

Indian e 64±15 (6) 44 (I)

Australian f 40±8 (16) 38±8 (8)

Braziliang 52±11 (12) 51±18 (2)

Crystalline Ratio

43±10 (14) 0.91

48±11 (4) 0.83

40±6 (22) 1.03

38±11 (18) 0.92

68±12 (5) 0.65

42±8 (8) 0.90

52±10 (I0) 0.98

a Superior province, reference 6 with additional data not yet published;

b Churchill province, I; c 5,7,8,9,10,11; d 12; e 2; f 13, 14,

15; g 16. * - heat flow values adjusted for glaciation effects.
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Although it appears from column 4 of Table 1 that mean heat flow in

greens±one belts is indeed lower than that in crystalline areas of the

shields, there is, in all shields except one, considerable overlap of the

two values. The exception is the Indian Shield, but there is only one

value from a greenstone belt for that. Further, in most cases no

statistical slgnflcance can be inferred as there are fewer data for

greens±one belts than for crystalline areas. Taking the mean values, the

heat flow from crystalline areas is apparently approximately I0_ higher

than that from greens±one belts.

Not all heat flow data used for compiling Table 1 had associated heat
generation data. The most complete set is for the Canadian shield

(Superior and Churchill provinces). Linear least squares regression for

those data yields:

Qo D r Q* A*

(mWlm 2) km (n_Im 2) (_Wlm s)

n

_reenscone belts 33_4 _'_ .,_ 37±7

Crystalline areas 26±6 12±4 0.67 40±9

0.51±0.46 7

1.16±0.51 11

where n is the number of data pairs, r is the correlation coefficient, Q*
is the mean heat flow and A* is the moan heat generation of borehole

samples. The correlations are low and statistically the differences

between the parameters for the two crustal types are insignificant.

However, assuming that radiogenic elements are distributed uniformly with

depth to D, the value of D for the greens±ones suggests that they are

approximately 7 ]an thick, a value compatible with those cited by Condle

(17). The data also suggest that the heat flow - heat generation

relationship for the greens±ones could be wcltten as

Q = Qo = (Dc-Dg)Ac + Dg_ [2]

in which subscripts g and c refer to greens±one and crystalline crust and

Qo is the reduced heat flow for the crystalline crust. This can be

seen by inserting appropriate values for greenstones and crystalline

terrain into equation [2]. It implies that the sreenstones are underlain

by normal crystalline crust, including 5 km of upper crust, but that they

are not allochthonous, replacing 7 kmof that crust rather than simply

overlyinsit.
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The Wabigoon Subprovince, interposed between the

predominantly metasedimentary-plutonic and gneissic English River

and Quetico Subprovinces to the north and south respectively,
exposes Archean greenstone and granitoid rocks for a strike

length of greater than 7re Km. Based on predominating rock types,
the western part of the subprovince is divided into two terranes:

the northwestern Wabigoon volcano-sedimentary and plutonic
terrane (NWI4) and the Wabigoon Diapiric Axis terrane (WDA)(1).

NWN in Ontario extends southwesterly from Savant Lake to

Lake of the Woods. Organized searches for older and younger age
limits for the evolution of this terrane, yield reliable zircon

U-Pb ages for supracrustal strata that span from 2755 Ha to 2711
Ha, al though most ages are between 272e Ha and 2734 Ha
(2,3,4,5,6,7). The lowermost volcanic sequence in the western
part of Nkl4 is bimodai Mg-rich tholeiitic basalt and rhyodacite
at Thundercloud Lake (2755 Ha)I later, at 2734 to 2718 Ha,
bimodal Fe-rich tholeiitic basalt and rhyodacite (Dash Lake) is

..... • v=,l, lt,, plutonlcm'_ T_-'. ._._._attended by b,.,ud.l basalt and =---' - " • ,,,-- ---v..
overlaps with intermediate to felsic calc-alKaline volcanism

(Kakagi Lake). The latest volcanism in the sequence at 2711 Ma is
dacite at Stephen Lake (3,7) which is conformable with the
subjacent Kakagi Lake strata and as such gives an upper llmit for

the age of major tectonism affecting the supracrustal rocks.
WDA is a 4ee Km long by 75 km wide domal structure which

consists of 1) gneissic tonal itic to granodioritic rocks forming
domes and lesser massive segregations, 2) crescentic dioritic to

granitic plutons occurring at or near the contact between the
gneiss domes and the Wabigoon supracrustal rocks, and 3) later
plutons of diorite to granite (1,8,9). U-Pb geochronology
indicates that at least some of the eastern part of the terrane,
which extends from Steep Rock Lake in the south to Caribou Lake
in the north, has some old (approx. 3.8 Ga) gneissic and
supracrustal rocks (le). The western part of WD_, so far has not
yielded old ages; gneissic to massive tonalitic rocks have

intrusive ages of 272i-2725 Ha (3,7,9). At least some of the
gneissic tonal ire forming the domes in the western part of WDA
have ages similar to, and in the field are gradational with,

tonalite plutons intruding NNN. A sphene U-Pb age of 2674 Ha for
gneissic tonalite with a zircon U-Pb age of 2723 Ha suggests that

the gneissification was a late event involving the resetting of

the sphene age but that the age of intrusion was retained by the
zircon. The crescentic and later plutons dated so far have ages
near 27ee Ha (3,7,9) and do not have regional foliation thus
providing an approximate lower limit for the age of major
tectonism in the terrane.

NWW is interpreted to have formed during rifting of a

basement complex that underlies the adjacent English River
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Subprovince (II) and the western part of NWW and WDA. The complex

is approximately 3.8 Ga old and perhaps older. The rifting

started with mafic magmatism which evolved to be bimodal basalt-

rhyodacite. Tonal ite intrusions accompanying the bimodal

volcanism caused little or no deformation of the adjacent

supracrustal rocks (12). Much of the contemporaneous

calc-alkaline sequence may be from mixing of basalt and tonalitic

magmas. The age of major deformation in the supracrustal rocks
may be bracketed by the age of the uppermost (and conformable)

Stephen Lake dacite at 2711 Ma and the age of the posttectonic

plutons at approximately 2788 Ma. Heating of the lower crust by
ponding of marie magma caused most of the deformation of both the

younger Wabigoon "rift" sequence and the basement complex; WDA is

the scar of maximum crustal diapirism transecting the new and old
crust.
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The presence of ultramafic lavas (komatiites) associated with Archaen

greenstone belts has been suggested to indicate very high increments (50-

80%) of partial melting of the Archean mantle [e.g., 1-3]. Such extensive

melting of the Earth's mantle during the Archaen might have profound

effects on the early tectonic and chemical evolution of the planet [e.g., 4

& 5], although problems associated with keeping the komatiite liquid in

equilibrium with the residual mantle at such high increments of melting has

cast doubt upon aspects of extensive melting [e.g.,6 & 7]. Two important

aspects of the origin of komatiites are discussed below.

I___.WHA____TTIS TH___EENATURE __OFPRIMARY KOMATIITE LIQUIDS?

One of the most fundamental aspects of understanding the tectonic and

geochemical mode of origin for komatiltes is the problem of komatiite

primary magmas. The identification of primary komatiite magmas is

complicated by the extensive metamorphism that these rocks have typically

undergone and by olivine (+ minor spinel) crystallization at low pressures

(-I atm). The crystallization of olivine rapidly depletes a komatiite

liquid in MgO, such that the most likely candidates for primary magmas are

those with the highest MgO contents.

Previous efforts to evaluate primary komatiitic liquids have proposed

that they might contain as much as 33% MgO [2] or 30% MgO [8]. These

studies have relied principally on comparison of the compositions of

olivines crystallized in high-pressure experimental studies of komatiites

with relict olivines found in komatiites (as high as -Fo94).

The Fe-Mg exchange between olivine and basaltic-komatiitic liquids has

recently been summarized by [9], in which they present equations for

calculation of olivine-liquid equilibria over a wide temperature (1074-

1600 ° C.) and pressure (I atm to 25 kbar) range. The KDvalues for a wide

range of komatiites (>20% MgO) were calculated using this equation and

range from 0.28 to 0.31 at temperatures of 1450-1650°C at I atm. This

olivine-liquid equilibrium is shown in Fig. 1 along with the compositions

of the most magnesian olivines in komatiites (olivine and komatiite

compositions from [8] and references therein). The I atm KD values have

been used here because the present author considers it most likely that the

olivines in komatiites have crystallized at very low pressures (-I atm);

previous investigators [2 & 4] have used KD values from high pressure

experiments, which are substantially higher [i0 & II].

The data shown in Fig. I (horizontal lines connect the olivine

compositions with the liquid from which they could have crystallized)

indicate that the komatiite olivines probably have crystallized from

liquids with Fe/Mg >0.230. This Fe/Mg (0.230) corresponds to 22-25% MgO in

the komatiites, depending upon the FeOcontent of the liquid. This data

indicates that the most magnesian olivines in komatiites could have

crystallized from liquids with 22-25% MgO, in contrast to previous

estimates of 30-33% MgO. These liquids will have liquidus temperatures of

-1500°C at i atm pressure. More MgO-rich komatiites have probably become

enriched in MgO as a consequence of olivine accumulation and/or Mg
metasomatism.
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II. WHAT PERCENTAGE OF MELTING IS REQUIRED TO PRODUCE KOMATIITES?

As noted above, it is generally assumed that a very high increment

of melting (50-80%) is required in order to generate komatiites from the

Earth's mantle. Experimental studies of the melting of reasonable mantle

compositions have shown that very magnesium-rich magmas may be produced at

high increments of melting [e.g., ll-13]. As outlined below, however,

these MgO-rich masmas produced by very large increments (40-80% 2 of meltin_
within the mantle are NOT komatiites.

A pseudo-liquidus phase diagram for evaluatin_ the petrogenesis of

komatiites is shown in Fig. 2. At low pressures ( 1 atm), some magmas

(those above the O1-R join) will crystallize augite as the first pyroxene

and others (those below the OL-R join) will crystallize pigeonite or

orthopyroxene first. Field and petrographic studies of komatiites have

shown that they crystallize augite as the first pyroxene in virtually all

instances. Most terrestrial magmas also crystallize augite as the first

pyroxene; boninites are an obvious exception. Also shown in Fig. 2 is the

field for the compositions of komatiites from Munro Township, which

crystallize augite as the first pyroxene [14].

A partially schematic melting path for melting of the mantle is shown

in Fig. 2 for melting at 15 kbars. At small to moderate increments of

melting (<-30%), the primary liquids will lie above the 0L-R join, but will

lie below the OL-R join at larger increments of melting. The extent of

melting required to produce primary magmas below the OL-R join will vary as

a function of the composition of the mantle and the pressure of melting,

but it is clear that high increments of melting that might produce dunite

or OPX-poor harzburgite residues will produce primary magmas that will lie

below the 0L-R join and will evolve to crystallize orthopyroxene and/or

pigeonite before augite. The extent of melting most likely to produce

komatiitic magmas is more like 20-25% rather than the 50-80% previously

proposed. Although not discussed by the previous authors, this feature is

further apparent in the data of [12 & 13].

Spinels from komatiites have Cr/(Cr+Al) from -0.70 to 0.80 [15],

which would suggest a slightly higher increment of partial melting of the

mantle that occurs in the present-day suboceanic mantle [16], rather than

the much higher increments proposed in previous studies.
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In summary, it is suggested that the extent of partial melting that
produces komatiite primary magmas is "20-25g and that these magmas have 22-
25Z MgO or less. This substantially lover estimate for the extent of

melting and eruption temperatures will certainly influence those tectonic

characteristics of greenstone belts associated with the dynamics of mantle
upweiiing and convection.
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THE Y,ILGARN CRATON WESTERN AUSTRALIA : A TECTONIC

SYNTHESIS : I R.E.P. Fripp, Western Australian Institute of Technology

The Yilgarn Craton in Western Australia is one of the larger contiguous

preserved Archaean crustal fragments, with an area of about 650,000 square

kilometres. Of this, by area, about 70% is granitoid and 30% greenstone.

The Craton is defined by the Darling Fault on its western margin, by

Proterozoic deformation belts on its southern and northwestern margins, and

by unconformable younger sediments on its eastern and northeastern margins.

A regional geotectonic synthesis at a scale of 1:500,000 is being prepared.

This is based largely upon the 1:250,000 scale mapping of the Geological

Survey of Western Australia together with interpretation using geophysical

data, mainly airborne magnetic surveys.

On a regional basis the granitoids are classified as pre-, syn- and post-

tectonic (1) with respect to greenstone belt deformation. The post-tectonic

granitoids yield Rb-Sr isochrons of about 2.6 b.y., close to Rb-Sr ages for
the greenstones themselves which are up to about 2.8. b.y. old (2), although

data for the latter is sparse.

Contacts between earlier granitoids and greens tones which are not obscured

by the post-tectonic granitoids are most commonly tectoniccontacts, intensely

deformed and with mylonitic fabrics. The general concensus however is that

there is a pre-tectonic, pre-greenstone sialic gneiss preserved in places
(1,3).

Existing models for the evolution of the belts involve 3 large basinal

structures ("broad elongate downwarps"), of which the Eastern one (the

Noreseman-Wiluna Belt) is considered to be a rift fault-bounded graben (I).

The postulated basins are separated by large tabular belts of discordant

post-tectonic granite when viewed regionally. This may be a 'red herring'.

It is possible that, for example, the entire greenstone package preserved on

the Craton was part of one basin, or numerous combinations and parts of

basins. There is no compelling diagnostic evidence collated to date to

postulate on the original disposition, geometry and relationships between
belts.

This synthesis is a preliminary attempt at addressing this problem, by

attempting to decipher the broad tectonic-stratigraphic sequences preserved

and thereby to reconstruct, as far as is possible, the original nature of the

greenstones. There is structural evidence to suggest that the deformation

histories of the greenstones and some of their surrounding and occluded

granitoids involves early fold-nappe tectonics in places, and possibly thrust
nappes, as well as late large-scale imbrication or slicing. During early

deformation of the belts, massif-style nappe tectonics may have occurred in

places, on scales not dissimilar to those seen in young fold belts.

It is intended, with future work, to test these postulates and to examine

whether the tectonic history of the Yilgarn Craton is indicative of the loss
of considerable greenstone (back to the womb?) and perversely (sic), its

local preservation by obduction and stacking. How well can we reconstruct the

deformed granitoids and greenstones, in their undamaged state?
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TECTONICS OF SOME AMAZONIAN GREENSTONE BELTS; Allan K. Gibbs,
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Greenstone belts exposed amid gneisses, granitoid rocks, and less

abundant granulites along the northern and eastern margins of the Amazonian

Craton yield Trans-Amazonican metamorphic ages of 2.O-2.1 Ga. (Regional

geology: 1-13). Early Proterozoic belts in the northern region probably

originated as ensimatic island arc complexes. The Archean Carajas belt in the

southeeastern craton probably formed in an extensional basin on older

continental basement. That basement contains older Archean belts with pillow

basalts and komatiites. Belts of ultramafic rocks warrant investigation as

possible ophiolites.

NORTHERN BELTS - Volcanic rocks of the northern belts were erupted in the

Early Proterozoic (2.3-2.1 Ga)(14-17). The contiguous belts of Guyana (18,19)

and Venezuela (20,21) closely resemble those of Suriname (7-9,22) and French

Guiana (1,4,16,23), though the two regions are separated by the Central Guiana

Granulite Belt. Typical sections consist of a lower flow and pillowed low-K

basalt-gabbro unit, overlain by interbedded mafic, intermediate, and felsic

volcanics of both tholeiitic and calc-alkaline suites; overlain by and

interstratified with volcaniclastic greywackes, pelites, and chemical

sedimentary rocks. Basalts with pronounced iron-enrichment and others with

high magnesium contents are both present, as are both tholeiitic and
calc-alkaline andesites and felsic volcanics (18,19,22,24). Generally

conformable tuffaceous and epiclastic conglomerates, greywackes, lithic

arenites, and shales appear petrographically and geochemically to have been

derived from the associated volcanic rocks, without significant contributions

from continental sources (18,25). The relative abundances and types of

volcanic and sedimentary rocks vary: felsic volcanics are irregularly

distributed, andmagnesian basalts and possible komatiites are particularly

common in central French Guiana (22). Ultramafic, mafic, and anorthositic

intrusive complexes may be genetically associated with some Of the volcanic

rocks (1,18,23). Some belts are overlain by quartz-rich epiclastic

sedimentary rocks that were folded and metamorphosed with the belts but appear

to be unconformable (1,13).

The northern belts have randomly-branching synclinal map patterns.

Prominent metamorphic foliations generally correlate with the regional folds,

with foliations locally crenulated or destroyed by younger shear deformation,

which elongated (WNW-ESE) both the belts and associated granitoid rocks.

Metamorphic grades range from amphibolite on the belts' peripheries to lower

greenschist and zeolite in the interiors. Diverse local mineral assemblages

indicate high, intermediate, and low-pressure metamorphic series. Anatectic,

two-mica granites intrude metapelitic schists along the northern periphery.

No evidence has been reported of basement-cover relations between the

northern belts and adjacent gneisses. Field observations and geochemical

similarities suggest that the greenstones pass into the intervening gneisses

by increase in metamorphic grade (14,15,17,26-28). The associated granulites

also appear to represent Early Proterozoic, rather than Archean crust

(16,27,29). Sm-Nd and Rb-Sr isotopic systematics indicate that little if any

older continental crust was involved in this greenstone-belt volcanism.

The northern belts are thought to have been originally contiguous with

the Birimmian belts of west Africa. Mature sedimentary rocks overlying the

greenstone belts have much in common with the Tarkwaian of West Africa.
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EASTERNBELTS- Belts of the east-central craton (30,31) have not been

adequately dated. Most lithostratigraphic sections have not yet been

resolved, in part due to intense deformation and common medium grade

metamorphism. Prominent banded iron formations, ultramafic schists, and

current-bedded, fuchsite-bearing quartz arenites and conglomerates are

present: these lithologies are uncommon in the northern belts. Small

enclaves of iron formations and chromite-bearing ultramafic rocks occur in

south and central Suriname, and might correlate with the east-central belts.

Archean greenstone belts with pillow basalts and komatiites, and belts of

serpentinite occur amid granitoid rocks and gneisses in the southeastern

craton, apparently forming a basement to the Serfs dos Carajas belt (32). The

latter has a dominantly mafic bimodal volcanic suite, roughly 4-6 km thick and

dated at 2.75 Ga, overlain by 100-300 m of iron formation, and a I-2 km thick

fine clastic and chemical sedimentary complex (33,34). The mafic rocks are

unlike typical Archean basalts and basaltic andesites, but have chemical and

isotopic evidence of contamination with older continental crust, like many

basalts of modern contiental extensional settings.
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AMAZONIAN GREENSTONE BELTS

Gibbs, A. K.
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Spatial greenstone-gneiss relationshipsz

evidence from mafic-ultramafic xenolith

distribution patterns

A,Y. Glikson

Division of Petrology and Geochemistry t Australian

Bureau of Mineral Resources_ Geology and Geophysics

ABSTRACT

The distribution patterns of mafic-ultramafic xenoliths

within Archaean orthogneiss terrain fUrnish an essential

key for the elucidation of granite-greenstone relations.

A complete gradation in scale exists between synclines t

large-scale outliers and outcrop-scale xenoliths of mafic

and ultramafic metavolcanic rocks. Accordingly_ most

greenstone belts constitute "mega-xenoliths" rather than

primary basin structures. Transition along strike and

across strike between stratigraphically low greenstone

sequences and xenolith chains demonstrate their contempo-

raneity_ as shown for example in Fig. I where the relati-

onships between the Holenarsipur greenstone belts and

associated xenoliths in southern India are portrayed,

Regional %o mesoscopic-scaie characteristics of xenoiith

swarms and their relations with early greenstone units

are well expressed in parts of the Pilbara Block_ Western

Australia, Xenolith distribution patterns in dome-

arcuate syncline gneiss-greenstone terrains define subsi-

diary gneiss domes within the batholiths. These terrains

represent least deformed cratonic "islands" within an

otherwise penetratively foliated deformed gneiss-green-

stone crust. The oval gneiss domes are thought %o have

developed originally by magmatic diapirism - evidenced by

intrusive relations and contact aureoles - followed by

late-stage solid state uprise related to isostatic adjust-

ments, The late vertical movements were associated with

development of major shear zones along tectonized boun-

dary zones of batholiths_ where interdigltated deformed

gneiss-amphibolite schist intercalations were derived by

the attenuation of xenolith-rich orthogneiss-, The defor-

mation process involved interthrusting and refolding of

the interleaved plutonic and supracrustal units. The

exposure of high grade metamorphic sectors is related to

uplift of deep seated zones of the batholiths along

reactivated faulted boundaries. Transitions from granite-

greenstone terrains into gneiss-granulite suites involve

a decrease in the abundance of supracrustal enclaves and

an increased strain rate. Whereas early greenstone

sequences are invariably intruded by %onalitic/trondhje-

mitic/granodioritic gneisses_ stratigraphically higher

successions may locally overlap older gneiss terrains and

their entrained xenoliths unconformably. The contiguity
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of xenolith patterns sugges%s their derivation as relics

of regional mafic-ul%ramafic volcanic cx_stal uni%s and

places limits on horizontal movements be%ween individual
crustal blocks.

I

)

t
TRONDHJEMITE

\

|

Fig. 1 -- A geological sketch map of the Holenarsipur

greenstone bel¢_ Karnataka (after Naqvi, 1981, J. Geol.

SOCo India, 22:458-_69)
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Alternative models of granite-greenstone relations are

portrayed in Fig, 2, Model I applies to late greenstone

belts overlapping sial whereas model 2 to early belts or

stratigraphically basal volcanic units believed to be

derived from simatic crust, Major detachments along

gneiss-_reenstone boundaries and local overfolding and

thrusting suggest horizontal tectonic translations,

These are overprinted by the dominantly vertical tectonic

movements related to the diapriric (magmatic and post-

magmatic) uprise of the tonalite/trondhjemite plutons,

The contiguous temporal-spatial grid outlined by the

xenolith swarms constrains major lateral movements of

individual blocks relative to each other_ placing limits

on plate tectonics interpretations,

a MODEL1

b

L.-"V

TGX

/

UG LG LS PK

MODEL 2

C
PK LG ^ UG LS TGX
I A _ /_ /I /1",, ..

X ";-/," :_

,...I.1..'.",.,"...'.'._...W.'.',;;"..'.',;V,,MA

Fig. 2 - Alternative

models of gneiss-

greenstone relation-

ships.

a - model I - gneiss-

gTeens tone basement-

cover relations_ invo-

lving deformed uncon-

formities (du) o

b - model 2 - _neiss-

greenstone relations

involving primary and

deformed intrusive

contacts.

c - model 2 portrayed

in block diagTam_

showing transition

from gTani t e-gTe ens-

tone. to gneiss-gTanu-

life terrain with

crustal depth,

LG- lower _reenstone

UG - upper greenstone

A - acid volcanics &

sediments_ TGX - Na-

gneiss with xenoliths|

PK - late granites|

dz - deformed zone|

LS- late sediments|

0 - ortho_neiss|

MA - mafic and anortho-

sitic inclusions|

x_ xa_ xb- xenoliths
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DISMEMBERED ARCHEAN OPHIOLITE IN THE SOUTHEASTERN WIND RIVER

MOUNTAINS, WYOMING -- REMAINS OF ARCHEAN OCEANIC CRUST. G.D. Harper,

Dept. Geological Sciences, State University of New York, Albany, NY 12222

Archean mafic and ultramafic rocks occur in the southeastern Wind

River Mountains near Atlantic City, Wyoming (Figure) and are interpreted

to represent a dismembered ophiolite suite. The ophiolitic rocks occur

in a thin belt intruded by the 2.6 Ga Louis Lake Batholith on the

northwest (I, 2). On the southeast they are in fault contact with the

Miners Delight Formation comprised primarily of metagraywackes with minor

calc-alkaline volcanics.

The ophiolitic and associated metasedimentary rocks (Goldman Meadows

Formation) have been multiply deformed and metamorphosed. The most

prominant structures are a pronounced steeply plunging stretching

lineation and steeply dipping foliation. Pillow lavas are stretched

parallel to the lineation and typically have aspect ratios of 10:3:1.

Bedding in banded iron formation shows polyphase folding with fold axes

parallel to the stretching lineation; sheath folds are locally well

developed. The intrusive contact of the Louis Lake batholith with the

ophiolitic rocks has been extensively modified by deformation; the

batholith becomes progessively more deformed as the contact is

approached, and at the contact the batholith is strongly lineated and

mylonitic. The contact between the ophiolitic rocks and the Miners

Delight Formation is a major fault zone (Roundtop Fault) containing

amphibolite-facies mylonites overprinted by greenschist-facies brittle

cataclasites (3). These structural data indicate that the ophiolitic and

associated metasedimentary rocks have been deformed by simple shear when

the Miners Delight was emplaced over the Louis Lake batholith and its

ophiolitic wall rocks.

The ophiolitic rocks include ultramafics, metagabbros, metadiabases,

and pillow lavas. Relict structures and textures are often well

preserved. However, an ophiollte "stratigraphy" is not present:; the

ophiolitic rocks consist of tectonic slices, from northwest to southeast:,

of (i) metadiabase, (2) metagabbro and ultramafics, (3) pelitic schists,

quartzite, and banded iron formation (Goldman Meadows Formation), and (4)

greenschist and amphibolite (Roundtop Mountain Greenstone) locally

containing pillows and massive flows or sills. In addition, a thin

sliver of pillow lavas occurs between the metadJabase and ultramafic

rocks at one locality, but is separated from the metadiabase by a

strongly foliated talc-actinolite-chlorite schist.

The ultramafic rocks are largely serpentin_tes, but some have

amphibole-chlorlte assemblages and one clinopyroxenite was found. Many

of the ultramaflc rocks and associated metagabbros have well-preserved

relict cumulus textures, and igneous layering is visible in a few

outcrops. The ultramafic rocks and associated metagabbros are only

weakly deformed, in contrast to the highly deformed mafic and

metasedimentary rocks.

Metadiabase occurs in a wide belt along the margin of the Louis Lake

batho]ith, and much of Jt occurs as large xeno]iths within the margin of

the batho]ith. The metadiabase unit locally contains numerous parallel

dikes, some of which show one-way chilling. Medium to coarse-grained
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metagabbro occurs locally within the metadlabase; someof the metagabbro
occurs as thin screens between fine-gralned metadlabase dikes. These
features suggest that the metadiabase unit represents a deformed sheeted
dike complex.

The Roundtop Mountain Greenstone contains commonpillow structures
with well-preserved chilled rims. Massive lavas or sills comprise a
significant portion of the formation, and gray phyllites occur rarely.

Rare isolated outcrops of black and foliated "basaltic komatiites,"
consisting prlmarily of actinolite and chlorite, occur in both the
Roundtop Mountain Greenstone and metadiabase. However, they are
chemically very different from the pillow lavas and metadiabases and
possibly represent younger alkaline dikes.

Metasedimentary rocks of the GoldmanMeadowsFormation overlying(?)
the Roundtop Mountain Greenstone consist of pelitlc schist, quartzite,
and banded iron formation (i). The bandediron formation possibly formed
by precipitation from hydrothermal vents in a mannersimilar to modern
metalliferous sediments formed at spreading centers (4). Mafic sills and
dikes (amphibolites) intrude the metasedimentary rocks, and are
themselves deformed and metamorphosed.

Geochemical analyses were madeof the metadiabase and pillow lavas to
determine whether they are genetically related (5). "Immobile" trace
element compositions (Ti, V, Cr, Ni, Zr, ¥, Nb) are very similar in both
units, consistent with the interpretation that they comprise different
parts of a dismemberedophiolite. These rocks are similar to modern
enriched mid-ocean ridge basalts.

The ophlolitlc rocks are interpreted as the remains of Archean
oceanic crust, probably formed at either a mid-ocean ridge or back-arc
basin. All the units of a complete ophiol_te are present except for
upper mantle peridotitles. The absence of upper mantle rocks may be the
result of detatchment within the crust, rather than within the upper
mantle, during emplacement. This could have been the result of a steeper
geothermal gradient in the Archean oceanic lithosphere, or may have
resulted from a thicker oceanic crust in the Archean (6).
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ll(E KOLAR SCHIST BELT: A POSSIBLE AROtlEAN SUTURE ZONE

G. N. Hanson 1, E. J. Krogstad 1, V. RaJamant 2 and S. Balakrlshnan 2, (1) Depar-

tment of Earth and Space Sciences, SUNY, Stony Brook, NY 11794 (2) School of

Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.

The. Kolar Schist Belt In the Karnataka craton, south India, is a 4 to 20

km by 80 km long, N-S trending Archean supracrustal belt dominated by maflc

metavolcantcs, The schist belt is surrounded on both sides by granodiorltlc

gneisses collectively known as the PeninsularGnelss, Our work has shown that

the Kolar Schist Belt and the surrounding gnetsses include major
discontinuities in age, structural style, and composition. These

discontinuities are defined by the schist belt itsel f.

The results reported here are based on our Rb-Sr, Sm-Nd, and Pb-Pb whole

rock isotope data; U-Pb dattng of zircon and sphene; major and trace element

(including REE) analyses; and field observations,

The schist belt is broadly synformal, but is complexly refolded Into

basin and dome structures (D. Nukhopadyay, personal communication). The flrst

period lnvol red N-S trending lsocl lnal recumbant folds during E-W compression,

These folds were refolded Into tight, upright folds along E-W trending axes.

This sequence is broadly similar to those seen In other schist belts tn the

western part of the Karnataka craton,

Contacts between the Peninsular Gneiss and the margins of the belt have

long been thought to represent an erosional unconformity. However, our recent

field work indicates that the rocks at the contacts are physical ly interleaved

by left lateral shearing. Due to thts shearing the adjoining gnelsses have

been converted to quartz-muscovite schists, which were previously Interpreted

to be metasedlmentary rocks.

The gneisses east of the schist belt are relatively homogeneous,

granodlortttc gnelsses which were folded prior to intrusionof minor felslc

bodies. Folds have not yet been defined in these gnelsses, but a strong

foliation was developed which strikes NNE and dips steeply to the west,

suggesting horizontal compression,

The gnelsses west of the schtst belt show amuch more complex, earlier

history than that of the eastern gnelsses, De granodiorltlc Dod Gneiss Is the

earl lest unit on the western side of the schist belt. This rock was subjected

to a period of deformation shown by an early foliation seen in some less-

strained exposures. Subsequently, the Dod Gneiss was intruded by the

leucocrattc, granodloritlc Dosa Gneiss and the granodiortttc Patna Granite,

Following the intrusion of the Dosa Gneiss, the terrane to the west of

the schist belt was subjected to a period of horizontal compression producing

tight to isocl tnal, W overturned folds with gently N or S plunging axes. The

strong NNE axial planar foliation produced by this deformation is cut by the

later N-S shears along the western margin of the schist belt.
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The gnelsses on the east and west side of the belt have been dated using

U-Pb ages for small populations of abraded zircons and abraded single zircons

as well as sphene. These zircons commonly give concordant ages, in which case

the small populations of zircons (ca. 100 micrograms) have analytical

uncertainties of less than i Ma. and the single zircons have uncertainties of

about 5 Ma.

Gneisses east of the belt were intruded at 2529+_1 Ma based on U-Pb ages

for zircon. This age is consistent with the Rb-Sr and Pb/Pb whole rock

Isochron ages. The isochrons have a mantle-like initial ratio for Sr

(87/86=0.7013) and mu=8 for the Pb data. These values suggest that the

gneisses were not derived from a much ol der continental crust. U-Pb ages for

metamorphic sphene are 2520 +1 Ma suggesting that the gneisses were

metamorphosed to at least amphibol ire grade at that time.

West of the belt, based on U-Pb ages for zircon, the Dod Gneiss was

emplaced at 2610+_5 Ma, the Dosa Gneiss was intruded at 2550_+10 Ma and the

Patna Granite at 2551+1 M_ The time of metamorphism based on the U-Pb ages

for sphene from the Dod Gneiss is 2551+-1 Ma. Rb-Sr and Pb/Pb whole rock data

suggest that the gneisses were variably contaminated by an older basement. U-

Pb ages for some of the single zircon cores from the Dod Gneiss and later

aplitic dikes indicate a zircon component was inherited from this basement,

which has a minimum age of 3200 Ma. The basement, which has not yet been

clearly identified in the field, seems to include quite evolved felsic rocks.

In the Kolar Schist Be.lt there are two suites of komatiitic and

tholeiitic amphibolites. Both the komatiitic and tholeiitic amphibolites on

the eastern side are light REE enriched, and almost all of the komatiitic and

tholeiitic _phlbolltes in the west-central part of the belt are lightest REE

depleted. The preservation of rare pillow structures and the association of

the amphibolites with iron formation suggest that the amphibolites were formed

under submarine conditions. The grade of metamorphism is amphibol ire facies.

RaJamani et al. (1) concluded that the komatiitic amphibolites from both

the east and west central part of the belt were derived by 10 to 25% melting

at depths greater than 80 km and at temperatures greater than 1500°C in a

mantle with an FeO/MgO ratio greater than that of pyrol ire. Other models

proposed for the generation of komatiites generally require larger percentages

of melting to generate the high MgO abundances.

RaJamani et al. (1 and in preparation) suggest that the tholeiites appear

to have been derived by melting at shallower levels than the komatiites and

derived from sources which were highly variable in their FeO/MgO ratios,

generally with FeO/MgO ratios much greater than that for the sources for the

komatiites. The key arguments are that: the tholeiites are very iron-enriched
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compared to the field for potential melts of pyrol tie at pressures less than

25 kb on an ol lvtne saturation surface; and while the incompatible elements

show similar ratios tn the komattties and tholelltes for each suite, the

expected correlations between major and trace elements for differentiation

from komatlties or melting of sources stmllar to those of komattties are not
found.

Sm-Nd data for komatlttes from both sides of the belt 1 le vtth large

variations about a 2900 Ma tsochro_ It is not clear why the data lte about a

2900 Ma tsochron. Is thts the age of these amphtbol lies? If this ts so, they

are much older than the igneous felstc rocks on either side of the belt which

are 2500 to 2600 Ma. Or, is thlsthe ttme when the sources became variably

1 tght REE enriched and depleted? Some of the variation in the Sm/Nd ratios ts

clearly a function of melting processes in which garnet was left tn the

restdu_ Perhaps the variabll try tn the data about the reference 1 tne reflects

a number of reasons such as: variable times of ltght REE depletion and

enrichment of their mantle sources; as wel 1 as the possible effects of crustal

contamination or metamorphic alteratio_

Even though the ages of the units making up the Kol ar Schist Belt are

poorly constrained, the sources of the amphlbol lies so far analyzed had long-

term histories of LREE depletion (epsil on Nd of +2 to +8 for an age of 2900

_y.) tel attve to other Archean maftc rocks which commonly have epsllon Nd

equal to about +2.0 _+ 2.0.

The Kolar Schist Belt represents a N-S trending discontinuity In the

structures, 1 tthologles, and emplacement and metamorphic ages of late Archean

gnelsses. The suggestion of a much older basement on the west stde of the

belt is not seen on the east. Within the schist belt amphlbolties from each

stde have distinctly different chemical characteristics, suggesting different

sources at similar mantle depth_ These mphlbolties were probably not part

of a single volcanic sequence, but may have formed about the same ttme tn two

completely different settlng_ Could the mphlbolites wtth depleted ltght REE

patterns represent Archean ocean floor vol canlcs which are derived from a

mantle source with a long term depletion of the ltght REE? Why are the

amphtbolltes giving an age which may be older than the exposed gnetsses

immediately on either side of the belt? These results suggest that it ts

necessary to seriously consider whether the Kolar Schist Belt may be a suture
between two late Archean continental terrane_
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PRELIMINARY REPORT ON THE GEOLOGY AND GOLD MINERALIZATION OF THE

SOUTH PASS GRANITE-GREENSTONE TERRAIN, WIND RIVER MOUNTAINS, WESTERN WYOMING

(USA); W.D. Hansel, Geological Survey of Wyoming, Laramie, Wyoming 82071

The South Pass granite-greenstone terrain lles near the southern tip of

the Wind River Mountains of western Wyoming. This Archean supracrustal pile

has been Wyoming's most prolific Source of gold and iron ore. From 1962 to

1983, more than 90 million tons of iron ore were recovered from oxlde-facles

banded iron formation, and an estimated 325,000 ounces of gold were mined

from metagreywacke-hosted shears and associated placers (i).

Precambrian rocks at South Pass are unconformably overlain by Paleozoic

sediments along the northeast flank, and a Tertiary pediment buries Archean

supracrustals on the west and south. To the northwest, the supracrustals

terminate against granodiorite of the Louis Lake batholith; to the east, the

supracrustals terminate against granite of the Granite Mountains batholith.

The Louis Lake granodiorite is approximately 2,630 + 20 m.y. old (2), and the

Granite Mountains granite averages 2,600 m.y. old (3).

The geometry of the greenstone belt is best expressed as a synform that

has been modified by complex faulting and folding. Metamorphism is amphibo-

lite grade surrounding a small island of greenschlst facies rocks.

The youngest of the Archean supracrustal successions is the Miners

Delight Formation. This unit yielded a Rb-Sr isochron of 2,800 m.y. (2). A

sample of galena from the Snowbird Mine within the Mienrs Delight Formation

yielded a model age averaging 2,750 m.y. (4). The Snowbird mineralization

appears to be syngenetic and is hosted by metavolcanics of calc-alkaline

affinity.

Based on regional mapping by Bayley and others (5) and by the author (in

progress), four mappable supracrustal units are present. The uppermost unit,

the Miners Delight Formation is greater than 1,600 m thick and consists of

metagreywacke, metavolcanics, metaconglomerate, graphitic schist, and

tremolite-actlnolite schist. Underlying, and in fault contact with tur-

bidites in the Miners Delight Formation, are metatholeiltes of the Roundtop

Mountain Formation. These metatholeiltes are amphibolites, greenstones, and

pillow metabasalts. The geometry of the pillows, which has been used for

determining the tops and bottoms of units (5, 6) has only produced ambiguous

conclusions due to the intense deformation.

The Roundtop Mountain greenstones are underlain(?) by quartzite, metape-

fire, and banded iron formation of the Goldman Meadows Formation. This unit,

in turn, is underlain(?) by mafic and ultramaflc schists tentatively named

the Diamond Springs ultramaflcs. This ultramaflc unit consists of amphlbo-

lite, serpentinlte, metaperidotlte, and tremolite-talc-chlorite schist.

Harper (6) interprets this unit to represent a dismembered ophiollte

sequence.

Mining districts occur on both limbs of the South Pass synform. While

the South Pass - Atlantic City District occurs along the northwestern limb,

the Lewlston District is found on the eastern llmb (7). Gold mineralization

in the South Pass - Atlantic City District is found chiefly in shear zones in



SOUTHPASS,WYOMING

HauseI, W.D.

115

metagreywacke adjacent to metagabbro sills and dikes. Wall-rock studies of

the auriferous shears, show Si and K have been enriched and Ca and Mg have

been leached. Mineralogically, these chemical changes are expressed as weak

phylllc alteration of the wall rock. Analyses for native gold from the

Diana Mine show high Au/Ag and low Au/Cu ratios (8). The gold analyses and

wall-rock alteration are characteristic of a hypothermal vein.

The Lewlston _istrlct on the eastern flank of the synform includes

strlke-trendlng, metagreywacke - hosted, auriferous shears along the llmb of

a major fold (9). A few major lodes are locallzed where the strike shears

intersect cross-cuttlng shears. Wall rocks show distinct chlorltlc and hema-

tltlc alteration as well as weak phylllc alteration.

(I) Hausel, W.D., 1980, Gold districts of Wyoming:

Wyoming Report of Investigations 23, 71 p.
Geological Survey of

(2) Stuckless, J.S., Hedge, C.E., Worl, R.G., Simmons, K.R., Nkomo, I.T., and

Wenner, D.B., 1985, Isotopic studies of the late Archean plutonic rocks

of the Wind River Range, Wyoming: Geological Society of America Bulle-
tin, v. 96, p. 850-860.

(3) Stuckless, J.S., and Peterman, Z.E., 1977, A summary of the geology,
geochronology, and geochemistry of Archean rocks of the Granite Moun-

tains, Wyoming: Wyoming Geological Association Earth Science Bulletin,
v. I0, no. 3, p. 3-10.

(4) Cannon, R.S., Jr., Bayley, R.W., Stern, T.W., and Pierce, A.P., 1966,

Ancient rocks and ores in south-central Wyoming labs.]: Geological

Society of America Rocky Mountain Section 18th Annual Meeting Program, p.
27.

(5) Bayley, R.W., Proctor, P.D., and Condie, K.C., 1973, Geology of the South

Pass area, Fremont County, Wyoming: U.S. Geological Survey Professional
Paper 793, 39 p.

(6) Harper, G.D., in press, Dismembered Archean ophiolite, Wind River Moun-

tains, Wyoming (USA), in Desmons, J., ed., Ophiolites through time:
Ophioliti.

(7) Harris, R.E., Hausel, W.D., and Meyer, J.E., 1985, Metallic and

industrial minerals map of Wyoming: Geological Survey of Wyoming Map
Series MS-14, scale 1:500,000.

(8) Antweiler, J.C., and Campbell, W.L., 1977, Application of gold com-

positional analyses to mineral exploration in the United States: Journal

of Geochemical Exploration v. 8, p. 17-29.

(9) Hausel, W.D., 1984, Preliminary geologic map of the Lewiston gold mining

district (Radium Springs Quadrangle), South Pass, Wyoming: Geological

Survey of Wyoming unpublished mineral report # MR 84-7, scale 1:24,000.
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EVIDENCE FOR SPREADING IN THE LOWER KAM GROUP OF THE YELLOWKNIFE

GREENSTONE BELT: IMPLICATIONS FOR ARCHEAN BASIN EVOLUTION 'IN THE SLAVE

PROVINCE. H. Helmstaedt and W.A. Padgham, Dept. of Geological Sciences,

Queen's University, Kingston, Canada, K7L 3N6, and Geology Division,Northern

Affairs Program, P.O. Box 1500, Yellowknife, N.W.T., Canada XIA 2R3

The Yellowknife greenstone belt is located in the southwestern part of

the Slave-Structural Province, a Late Archean (2.7-2.5 Ga) granite-

greenstone terrane in the northwestern part of the Canadian Shield.

Supracrustal rocks within this province, collectively referred to as

Yellowknife Supergroup (Henderson, 1970), differ from the supracrustal

successions of the Superior Province and other older Archean terranes by the

absence of komatlites and the high proportion of metasedimentary to

metavolcanlc rocks. The Yellowknife belt was first mapped by Jolliffe

(1942, 1946) on the scale of one inch to one mile, and the gold-produclng

area around Yellowknife was remapped on a more detailed scale (1:12,000) by

Henderson and Brown (1966). As the belt became the best-known example of

the basalt-domlnated supracrustal belts in the western Slave Province

(Padgham, 1985), the stratigraphic framework established here (Henderson,

1970), formed the basis for the development ofmodels for Archean basin

evolution (McGlynn and Henderson, 1972; Henderson, 1981). Under a recent

mapping program of the Geology Division of the Northern Affairs Department

in Yellowk_ife, detailed mapping was extended, and a 1:10,000 map series for

the'entire belt Is currently under preparation. This work resulted in a

number of revisions and refinements in the established stratigraphy

(Helmstaedt and Padgham, 1986) and provides the basis for a reassessment of

current models of greenstone belt evolution in the Slave Province.

The major portion of the Yellowknife greenstone belt is underlain by

the predominantly mafic rocks of the Kam Group which consists of a

northeasterly-striking, homocllnal sequence of flows and tuffs that dip

steeply and face uniformly to the southeast (Fig. I). Numerous dikes, sills

and irregular bodies of gabbro and locally anorthosite appear to form an

intergral part of the volcanic sequence. The Kam Group has been subdivided

into four formations (Fig. 2) with a combined thickness of approximately 11

km. The lower contact is obscured by the intrusion of a composite bathollth

(Western Granodiorite, Fig. i) that cuts across the strike of the flows. At

the base of the exposed section, near the northern end of the belt, a narrow

band of felsic volcanic rocks and banded iron- formation is in conformable

contact with overlying pillowed flows above which a maflc extrusive-

intrusive complex is developed (Fig. 2) whose pseudostratigraphy resembles

that of certain Phanerozoic ophiolltes. Near the southwestern end of the

belt, the upper part of the Kam Group (Yellowknlfe Bay Formation) overlaps a

sequence of older volcanic and sedimentary rocks belonging to the Octopus

Formation (Fig. I). In the northern part of the belt, the lower formations

of the Kam Group are truncated by an unconformity beneath conglomerates and

sandstones of the Jackson Lake Formation. Farther to the south, where the

top of the Kam is preserved locally, it is overlain by calc-alkaline rocks

of the Banting Group that, in turn, are overlain by turbidites of the Walsh

and Burwash Formations. All rocks of the Yellowknife Supergroup are

deformed and metamorphosed, with metamorph£c grade increasing from

greenschist to amphibolite facies towards the granitoid intrusions. Inspite

of the metamorphic overprint, however, primary structures and intrusive

relationships are well preserved.
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The mafic intrusive-extrusive complex of the Chan Formation (Fig. 2)

grades from a lower part, dominated by gabbro, through a multiple dike

complex into massive and pillowed flows with thin beds of interflow

sediments. At the base of the section is a sheet-like body of massive,

medium- to coarse-grained, locally layered gabbro that was intruded into a

sequence of pillowed flows, remnants of which are preserved at three levels.

The upper boundary of this body is a relatively sharp transition into the

dike complex which consists of numerous, fine- to medium-grained metadiabase

dikes and septa and irregular bodies of relatively coarse gabbro between

which screens of pillowed flows can be recognized. The dikes, which are

locally sheeted, show symmetric and asymmetric chilled margins and range in

width from less than one to over 10m. Some dikes grade into pillows,

suggesting that they were intruded close to the seafloor and may have acted

as feeder system to the growing volcanic pile (de Wit and Stern, 1978).

Most of the irregular gabbros are multiple intrusions with abundant chilled

margins and extremely complex contact relationships. Igneous layering is

generally absent at this level, but an up to 100m thick, sheet-like body of

gabbroic anorthosite was recognized (Fig. 2). It is surrounded entirely by

gabbro that has chilled margins against the anorthosite. Though massive and

pillowed flows predominate above the dike complex, sills and irregular

bodies of gaDbro, many of them multiple intrusions, are common in the upper

parts of the Chart Formation. The top half of the Kam Group continues to be

dominated by pillowed and massive mafic flows, but contains numerous

intercalations of felsic tuffs and tuffaceous sediments. Some of the flows

and many of the interflow tuffs and sediments are continuous along strike

for more than 10 km and allow stratigraphic correlation across Proterozoic

transcurrent faults (Fig. I). Synvolcanic mafic intrusions in this part of

the section consist of numerous sills some of which are connected to dike

swarms. The entire section was intruded also by several post-volcanic dike

swarms.

The Yellowknife greenstone belt has been interpreted as the western

margin of an Archean turbidite-filled basin bordered in the east by the

Cameron River and Beaulieu River volcanic belts (Henderson, T981; Lambert

1982). This model implies that rifting was entirely ensialic and did not

proceed beyond the graben stage. Volcanism is assumed to have been

restricted to the boundary faults, and the basin was floored by a down-

faulted granitic basement. On the other hand, the enormous thickness of

submarine volcanic rocks and the presence of a spreading complex at the base

of the Kam Group suggest that volcanic rocks were much more widespread than

indicated by their present distribution. Rather than resembling volcanic

sequences in intracratonic graben structures, the Kam Group and its tectonic

setting within the Yellowknife greenstone belt have greater affinities to

the Rocas Verdes of southern Chile (deWit and Stern, 1981), Mesozoic

ophiolites, that were formed in an arc-related marginal basin setting. The

similarities of these ophiolites with some Archean volcanic sequences was

previously recognized by Tarney et al. (1976) and served as basis for their

marginal-basin model of greenstone belts. The discovery of a multiple and

sheeted dike complex in the Kam Group confirms that features typical of

Phanerozoic ophiolites are indeed preserved in some greenstone belts and

provides further field evidence in support of such a model.
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FIGURE CAPTIONS: (I). Geological map of the Yellowknife greenstone belt.

Modified from published maps of the Geological'Survey of Canada and Northern

Affairs Program, Yellowknife. (2). Generalized section of the Kam Group.
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CRUSTAL AccRETIoN IN A 2.7-2.5 Ga "GRANITE-GREENSTONE"

TERRANE_ SLAVE PROVINCEj NWT: A PROGRADING TRENCH-ARC SYSTEM?

Hoffmanp Paul F., Geological Survey of Canada, Ottawa, Ont. KIA 0E_
Progradation of a trench accretionary complex and related magmatic arc

provides a simple tectonic model of crustal growth in the Slave Province, NW
Canadian Shield. Existing models involving intracontinental rifting do not
adequately account for; (1) the paucity of exposed pre-greenstone basement, (2)
isotopic evidence for major crust-mantle separation during and after greenstone
belt volcanism, (3) absence of coarse clastics intercalated with greenstone
volcanics, and (tt) the typical stratigraphic sequence of submarine volcanics
(tholeiitic and calc-alkaline), veneered by pelagic sediments (chert, iron-formation,

carbonate, graphitic pelite), and overlain by turbidites of volcanic+plutonic

provenance (whereas in rifts subsidence and clastic sedimentation precede
volcanism as the lithosphere progressively attenuates). In the proposed model, the

greenstone belts are seen as erosional remnants of a formerly continuous
accretionary complex of juxtaposed island arcs and other crustal bathymetric
highs, delaminated from subducting oceanic lithosphere and overlain by trench
turbidites. Granitoids coeval with greenstone volcanics and fragments of older
basement were accreted as arc roots. Subsequently, the foreshortened

accretionary complex was extensively intruded by crust and mantle derived plutons
of the prograding autochthonous magmatic arc, volcanic levels of which are eroded
away. This major plutonism, typically 40-100 m.y. younger than greenstone
volcanism, was accompanied by high-T low-P metamorphism of the accretionary
complex and provided, in addition to cannibalization of the accretionary complex, a
source for the diachronous trench turbidites. Differences between the Slave

Province and other Archean granite-greenstone terranes are explained in the model
as an accretionary complex dominated by arcs over other types of bathymetric
highs (seamounts chains, fracture zones, oceanic plateaus) and a trench kept filled
by turbidites, perhaps due to nearby collisional orogeny. The model predicts
systematic regional variations in the ages of greenstone volcanism, turbidite
sedimentation and autochthonous plutonism. It also predicts that Sm-Nd studies of

the autochthonous plutons will yield model ages for bulk crust-mantle separation

younger than greenstone belt volcanism, whereas intracontinental rift models
predict the opposite.
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Structural studies in the southern Abitibi Belt of the

Superior Province have revealed a "dynamic" tectonic style asso,

ciated with wrench-fault systems (1). The fundamental features

of this tectonic regime are the following:

i) the formation of "lozenge-shaped" blocks of diverse

terranes such as: orthogneissic basement; ultramafic lavas and

associated sediments; tholeiite plateaux and associated sill

complexes; bimodal basalt-andesite - rhyolite volcanic complexes.

ii) all blocks are bounded either by fault - zones or

by highly strained zones of ductile deformation, and there is a

pronounced gradient in degree of deformation from well preserved

cores to highly deformed and sometimes mylonitized margins;

iii) sedimentary accumulations occur along the margins

of the blocks in a series of narrow basins bounded by shear -

zones;

The deformation history is summarized below and shown in

simplified form in Figure 1.

The first stage of deformation was simple shearing asso-

ciated with WSW - ESE sinistral wrench faulting which resulted in

NW - SE fold traces, transected schitosities and insignificant

volume changes. Progressive deformation affected blocks of ter-

rane in a tectonic regime in which volcanism, shearing, deforma-

tion and uplift and erosion were synchronous. Terranes composed

of different lithologies were juxtaposed and turbidite accumula-

tions were formed in elongate basins overlying the fault-zones.

The second stage of deformation was a N - S compression

which resulted in the development of highly strained E - W thrust

-shears, fold traces and schistosity and a pressure-solution

cleavage. It also generated NE - SW and NW - SE complimentary

faults defining " S " and " Z " sigmoidal forms and was accompa-

nied by synchronous turbidite accumulation.

The superposition of the second-stage E - W shears on the

first-stage WNW - ESE shears resulted in the formation of "lozen-

ge-shaped" fault-bounded blocks of terrane. These are evident in

the simplified geological compilation of the southern Abitibi

Belt shown in Figure 2.

U - Pb zircon ages, compiled in Ludden et al., ( 2 )

indicate that the volcanic accumulations in the Porcupine, Rouyn-
Noranda and Val D'Or areas of the southern Abitibi Belt define an

axis of volcanism of tholeiitic lineage that was at its peak at

approximately 2700 m.y.. These volcanic rocks superimpose an

older volcano-plutonic terrane which is characterized in the NE -

Abitibi belt and can be correlated towards the SW across the

Kapuskasing front to the Wawa subprovince ( 2,3 ). This axis of

volcanism is approximately 2850 - 2720 m.y. in age and is domi-

nated by calcalkaline volcanic and plutonic rocks.
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A tectonic model is proposed in which the southern Abitibi

Belt formed in a series of rift basins which dissected an ear-

lier formed volcanic arc. Comparisons can be made with Phanero-

zoic areas such as, the Hokuroko basin of Japan, the Taupo volca-

nic zone of New Zealand and the Sumatra and Nicaragua volcanic

arcs. In addition the identification of the major shear-zones

makes it possible to speculate that the southern Abitibi Belt

comprises a collage of blocks of terrane which have been accreted

against a more stable continental margin or micro-continent. If

this interpretation is correct, analogies can be made with the SW

margin of the U.S.A. in which recently formed blocks of volcanic

terrane are being accreted against the western margin of the
U.S.A..

FIGURE 1 : Stages of Deformation of the Southern Abitibi Belt.
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FIGURE 2 : Schematic representation of " lozenge - shaped "
blocks of terrane bounded by shear-zones and thrust-shears In the
Southern Abltlbt belt

49 °
00'

79000 . 78000 .

o o oI_,
0

49 °

00'

li"o v

o v

0

0 0

48 °

00' 79000 ,

INTRUSIVE ROCKS

Qz-MONZONITE-GRANO DIORITE

TONALITE-TRONOJH EMITE

GNEISS

78000 ,

50.km
I I I I I

VOLCANIC ROCKS SEDIMENTARY ROCKS

FELSIC VOLCANIC PREDOMINANT _ LATE SEDIMENTARY
SERIES

_0-_0"7 MAFIC VOLCANIC PREDOMINANT _ SEDIMENTARY WEDGE

I ULTRAMAFIC SYMBOLS

e,_e o°'p SHEAR ZONE

48 °

00'

REFERENCES:

(1) Hubert C., GelJnas L., Trudel P., 1984, Can J. Earth ScJ.,
22, 240-255.

(2) Ludden 3.N., Hubert, C., Garlepy, C., 1986 , Geol. Hag., In
Press.

(3) Percival J.A. and Krogh T.E., 1983, Can 3. Earth ScJ., 20,
830-843.



124

TRANSPRESSION AS THE MAIN DEFORMATIONAL EVENT IN AN ARCHEAN

GREENSTONE BELT, NORTHEASTERN MINNESOTA; P.J. Hudleston and D. Schultz-Ela,

Department of Geology and Geophysics, University of Minnesota, Minneapolis,

MN 55455; R•L. Bauer, Department of Geology, University of Missouri,

Columbia, MO 65211; D.L. Southwick, Minnesota Geological Survey, 2642

University Ave., St. Paul, MN 55114.

Deformed and metamorphosed sedimentary and volcanic rocks of the

Vermilion district constitute an Archean greenstone belt trending east-west

between higher grade rocks of the Vermilion Granitic Complex to the north

and the Giants Range batholith to the south (Fig. I). Metamorphic grade is

low throughout, being lowest in the center of the belt (chlorite zone of the

greenschist facies) (I). All the measured strain, a cleavage or schisto-

sity, and a mineral lineation in this belt are attributed to the 'main'

phase of deformation (D 2) (2) that followed an earlier nappe-forming event

(D I) (3,4), which left little evidence of penetrative fabric (2)•
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Figure _ . Simplified structural m_ of the Vermilion greenstOne-granite terrane. Rock units

are: vgr - granite, chlefly the Lac La Crolx; vmg = biotite schist, paragne£ss, and

mlgmatite; vt - tonallte; Iv = Lake Vermilion Formation plus closely associated rmcks

of the Upper Member of the Ely Greenstone; es = Soudan Iron-formation Member of the

Ely Greenstone; el _ Lower Hember of the Ely Greenstone| mb= unnamed metabasalt;

tgn _ tonalite gneiss; ggr i granite; gmz - granite and monzonite.

Previous work assumed that the D2 deformation resulted from north-south

compression across the district, presumably related to diapiric intrusion of

the batholithic bodies to the north and south (I). A number of lines of

evidence now lead us to believe that a significant component of this defor-
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mation resulted from dextral shear across the whole region. Thus the

Vermilion fault, a late-stage largely strike-slip structure and one of

several faults (I) that bound the Vermilion district to the north, may

simply be the latest, most brittle expression of a shear regime that was

much more widespread in space and time. Features that are indicative of

shear include ductile shear zones with sigmoidal foliation patterns, highly

schistose zones with the development of shear bands, feldspar clasts or

pyrite cubes with asymmetric pressure shadows, and the fact that the asym-

metry of the F2 folds is predominantly Z for at least 15 km south of the
Vermilion fault.

The presence of a large component of simple shear may help explain addi-

tional structural features in a simpler way than otherwise possible. Just

south of the Vermilion fault the cleavage locally becomes folded and a new

cleavage develops in a similar orientation to the old cleavage away from the

folds. Rather than interpreting this as evidence for an additional episode

of deformation, we consider it to be due to a single process of continuous

shear: a foliation develops and after a large strain local perturbations

result in folding of the old foliation and the development of a new one

axial planar to the folds.

The same type of perturbation can lead to the Juxtaposition of ENE-

*-o_A_ .... _- _e _nn,h,i_h_nn_1 _nd flattening strains (5) (Fi_s. 2 and 3)
a distinctive feature of the rocks of the Vermilion district otherwise hard

to account for. The maximum extension directions (X) of all samples showing

constriotional strain, plunge east at angles between 30 and 65°. X in

samples showing flattening strain plunges east or west, but near the

Vermilion fault all plunges are west or more steeply east than they are in

constrictional samples. The maximum shortening direction (Z) plunges con-

sistently less than 25 ° to the north or south.

The strain variations require a model which can satisfy compatibility

constraints and space considerations. The area of consistent constrictional

strains in the south may represent one regional component of the strain.

Spatial correspondence of flattening strains with the Vermilion fault
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Figure 3. One method for producing bands of juxtaposed flattening and
constrictional strains. Transpression produces flattening strains with
vertical extension, modified in perturbed zone to become constrictional.

suggests that a simple shear component was added in that area. A modified

model of transpression may explain how E-plunging X axes are reoriented to

become W-plunging by a concomitant inhomogeneous progressive simple shear.

Less than vertical plunge of the X axes may necessitate some component of

oblique motion on the fault.

In a general way the strain patterns observed in the vermilion dlstrict

can be reasonably explained by a history of N-S shortening accompanied by

inhomogeneous dextral simple shear. The variations of strain may be a con-

sequence of variations in the relative intensities of shortening and shear,

large perturbations of the shear, or the influences of other structures.

There may be an analogy with the strain partitioning that occurs in small

scale ductile shear zones at large strains.

For transpression to have occurred, the Vermilion district would have to

have been a region of relatively soft lithosphere caught between two more

rigid (either thicker or cooler) blocks to the north and south. We do not"

yet know to what extent the high-grade terranes to the north and south were

also affected by transpressional deformation and therefore the configuration

of the more rigid blocks.
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The _ 3.5 Ga-old bimodal suite underlying an extensive area in south-

western Swaziland comprises the oldest-dated sialic rocks in the Kaapvaal
structuraJ province(1). The suite consists of leucocratic, layered

tonalitic-trondhjemitic gneisses and amphibolites characterized by the

effects of repeated high strains(2). This suite is considered to represent

a sialic basement on which metavolcanic and metasedimentary rocks, now
preserved as scattered 'greenstone' remnants, accumulated. Direct evidence

to confirm this temporal relationship is lacking, but structural data from

the Dwalile, Assegaai and Commondale areas indicate that (i) the bimodal

gneisses experienced a complex structural history prior to the first

recognizable deformation in the supracrustal rocks (i.e. DI in the

supracrustals is equivalent to Dn + I in the gneisses) and (ii) scattered

remnants of the Dwalile rocks infolded with the bimodal suite structurally

overlie the gneisses and are preserved in synformal keels (2)(3).

Significant proportions of metaquartzites and metapelites are present in

the Assegaai 'greenstone' sequence, the presence of which implies the
existence of felsic crust in the source area from which these sediments

were derived, a conclusion that is consistent with the structural data.

Ultramafic and pillowed mafic rocks of komatiitic and

tholeiitic affinity are present in all four 'greenstone' remnants, but each

contains distinctive lithologies. The Assegaai sequence is characterized
by the abundance of clastic and chemical sediments that are a minor

component of the Commondale and Nondweni remnants. In the former there is

a prominent sub-volcanic intrusion composed of multiple layers of massive

serpentinite (in which relict cumulate olivine is present 1ocally)

alternating with spinifex-textured (olivine and pyroxene) layers. There is

a consistent relationship in the thicknesses of the individual layers, i.e.

where the serpentinite layers range from 10 to 40 m in thickness the

spinifex-textured layers are I to 3 m thick. At Nondweni the sequence is

dominated by pillowed tholeiites interlayered with high-magnesium basalts

and basaltic komatiites (up to 22% MgO). The latter show well developed

pyroxene spinifex but peridotite komatiites and units with olivine spinifex

are entirely absent. Silicification of the volcanics considered to be

contemporaneous with extrusion is not uncommon. Within the volcanic

sequence are numerous graded air-fall tuffs and flows of rhyolite

compositions. A zone with biogenic or stromatolitic structures is also

preserved.

These subtle lithologic differences may reflect different levels of

exposure and/or ages of accumulation. The Nondweni greenstones show a

consistent northwesterly younging direction in rocks which are not highly

strained and which are separated by poorly exposed areas of high strain,

suggestive of tectonic interslicing. In contrast the Assegaai and

Commondale rocks show evidence of early reclined folds, which may be a

reflection of deeper infolding. Preliminary geochronologic data indicate
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that the Dwalile 'greenstones' are of similar age to the Barberton
greenstones(1). Pb-Pb isotopic data from a single komatiitic flow at
Nondweni define an age of 3.15 Ga that is consistent with an Rb-Sr age of

3.1Ga for an associated rhyolite(4). However, Sm-Nd data define an age
of 3.6 Ga for komatiitic, tholeiitic and rhyolitic flows. Possible
explanations are that either the Pb-Pb and Rb-Sr systems were reset at

3.1Ga subsequent to extrusion at _3.6 Ga, or, on eruption 3.1Ga ago,
the extrusions interacted with _ 3.5 Ga-old felsic crust leading to a range
of initial Nd isotopic compositions of the mafic rocks and the generation
of rhyolites by remelting of that crust(4).

Subsequent to the DI event (Table I), mantle-derived tonalitic plutons
(Tsawela and Braunschweig) and the meta-anorthositic Mponono layered
intrusive sheet were emplaced into the bimodal gneisseS and Dwalile
greenstones. All these rocks were strongly and repeatedly deformed under
amphibolite-facies conditions (Table I).

Sheet-like granitoid batholiths were intruded at _ 3.2 and _ 3.0 Ga,
the locus of emplacement migrating northwards with decreasing age. The

3.2 Ga-old multiphase sodic granitoid intrusion screens the Assegaai and
Commondale greenstone remnants from their underlying gneissic basement.
Intrusion occurred in the interval between DI and DR in the Assegaai and
Commondale areas. A chemically and mineralogically similar granite also
intrudes the Nondweni 'greenstones' but neither its age nor structural
style have yet been studied.

At a high structural level, a second sheet-like, but more potassic
granite, the vast multiphase Lochiel batholith, was intruded at _3.0 Ga
north of Dwalile. Following this period of widespread emplacement of
granitic magmas emergence above sea-level of stable continental crust took
place. Subaerial weathering of this dominantly granitoid terrane was
accompanied in the north by the development of braided stream systems
draining southeast off the flank of the NE-trending Lochiel batholith(5)
into the Pongola basin(6). Minor contemporaneous volcanism accompanied the
fluvial sedimentation and heralded a period of subaerial extrusion of lavas
(the 2.94 Ga-old Nsuze Group), that range incomposition from basalt to
rhyolite and attain a thickness of _ 8.5 km SE of Piet Retief(7). No
ultramafic nor high-MgO flow units are present and the sequence is
characterized by the simultaneous extrusion of mafic and acidic lavas.
Typically porphyritic andesites are also present.

The Nsuze Group is preserved in a series of inliers in the south where
its thickness decreases in part due to truncation by the upper (Mozaan)
group of the Pongola Supergroup or by the Palaeozoic Natal Group. Volcanic
rocks are less abundant in the southern inliers. Shallow water subtidal
and tidal-flat sediments including stromatolitic carbonate sands are
prominent in the Wit Mfolozi inlier. A heterolithic unit 1.5 km thick
dominated by pyroclastic rocks interlayered with shallow marine sediments
forms the base of the Nsuze Group south of Babanango. This unit is
truncated towards the east by a 4.0 km thick sequence of tidalite

sediments with interlayers of basaltic andesite lavas. Transport
directions in the inliers are from the north and northwest.
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Sedimentation in the Mozaan group was largely controlled by the

interaction of a braided alluvial plain and a macrotida! basin(8). Mozaan
sediments are not preserved south of the Wit Mfolozi inlier either as a

result of removal by erosion or of non-deposition.

The MozaanGroup is typically deformed into gently dipping, doubly
plunging synclinal structures resulting from interference of NW and NE-

trending axial traces. Adjacent to the southern margin of the Kaapvaal
Province, tight E-trcrding folds with vertical axial surfaces are dominant

reflecting a response to deformation related to the development of the

Natal thrust zone at _ 1.1Ga. The Nsuze Group is highly strained adjacent
to the Swaziland border apparently related to a 20 km wide belt of NW-

trending folds and faults with left-lateral movement within which the dyke-
like, mafic Usushwana Intrusive Suite was emplaced at _ 2.87 Ga(9).

The significance of the Pongola Supergroup lies in the fact that it
demonstrates the co-existence of stable continental crust in southeastern

Africa and metastable crustal conditions in southern central Africa

dominated by extrusion and intrusion of voluminous komatiitic and
thn1_iitir m_nm_

Emplacement of large volumes of granitic magmas principally into

Pongola rocks terminated Archaean evolution. Multiple gneiss domes

separated by screens of Mozaan sediments of high metamorphic grade

developed in southern Swaziland adjacent to the belt of NW-striking, highly
strained Nsuze rocks. Subsequently a thin sheet (300 to 1000 m thick) of

potassic granite was emplaced at the unconformity between the Mozaan Group

and its gneissic granitoid basement. The final pulses of granite plutonism

resulted in the emplacement of sharply transgressive, typically coarse-
grained, porphyritic plutons ranging in size from 40 km_ to 650 km2 about

which narrow contact aureoles are developed in the Mozaan sediments. Rb-Sr

isotopic data have yielded only whole-rock errorchrons for these rocks(10).

The concentration of post-Pongola granitoids within thecore of the

Pongola depository suggests that depression of the depositional basin

promoted partial melting of the lower crust, which would be consistent with

the proposed model for the genesis of the granitic melts based on

geochemica! data(t1). The post-Pongola granites differ in their setting
from other Archaean granites in southern Africa(5).
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GEOLOGICAL EVOLUTION OF THE PIETERSBURG GREENSTONE BELT, SOUTH AFRICA,

AND ASSOCIATED GOLD MINERALIZATION; M.G. Jones, Department of Geology, Imperial

College, London and M.J. de Wit, Lunar and Planetary Institute, Houston, Texas.

This poster presents current thoughts based on preliminary field work

carried out as part of a Ph.D. project, the aim of which is to integrate the

polyphase history of gold mineralization seen in the area with the geochemical

and tectonic evolution of the greenstone belt as a whole.

Gold mineralization is found in four distinct regional geological settings:

I. A first phase of gold mineralization was associated with early low grade

metamorphism and metasomatism of a 'greenstone basement" sequence of

serpentinites (metaperidotites). These are generally intrusive into a series of

BIF units, ferruginous shales and cherts. There are also associated extrusive
tholeiitic metabasalts and ocellular-bearing komatiitic basalts. The regional

hydration which characterizes this early metamorphism resulted in major chemical
alteration of the basement and large scale fluid movement, with migration of Fe,

and Mg ions, SiO_ and possibly gold. Early shear zones (possibly represented
by a nowflat-ly_ng carbonate-fuchsite-gneiss horizon) may have facilitated this
fluid movement.

2. The basement sequence is unconformably overlain by a 'cover' of coarse

clastic sandstones and conglomerates which contain basement-derived detritus.

The conglomerates are often well sorted and graded and may represent coarse
turbidites. Placer-type pyrite and BIF clasts, both containing minor gold

values, are present in these cover rocks and hence a second period of gold

mineralization (reworking) is envisaged.

3. The older rock sequences and gold mineralization above were all affected by

a regional deformation event and it is the associated structural traps which
contain the most significant gold occurrences seen in this greenstone belt. A

well developed upright cleavage with a predominantly NE-SW strike and three

major composite shear zones (each containing a number of tectonic breaks) are
the main manifestations of this deformation. Strain analysis in the shear zones

has been carried out using ocelli from the pillowed komatiitic basalts. The
measurements indicate that close to or within the shear zones the finite strain

ellipsoid results from a minimum of 50-70% flattening across the cleavage and

100 - 180% extension along the main stretching lineation seam.

Antitaxial and composite extension veins have been recognized. The veins

contain fibrous crystals of quartz and calcite which plunge parallel to the

stretching lineation (as defined by stretched conglomerate and breccia clasts

lying in the cleavage plane). The veins are thus syn-kinematic with this main

deformation event. The orientation of the quartz fibres is parallel to the

incremental extension growth direction of the dilational veins and so the

stretching lineation is parallel to the kinematic movement direction

(approx. NW-SE when rotated to the horizontal). The veins are formed by the

crack-seal fibrous growth mechanism and semi-quantitative strain analysis
indicates clearly that the incremental strain ellipse (in the X-Y plane) did not

change orientation significantly during the deformation event.

Field evidence indicates that the shear zones were thrusts (SE over NW) with

both vertical and lateral components of movement (Fig. 1). One of the shear
zones, the Synmansdrift shear zone is marked by an unusual chaotic breccia which
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.consists of white and brown-red banded chert and BIF clasts, identical to the
BIF from the basement, set in a red ferruginous shale-like matrix. The clast
content and size vary abruptly both across and along strike and there is no
well-defined bedding (Fig. 2). The lithology can be traced for 7 km along
strike and may be up to lOOm in thickness but its upper (southern) boundary is
ill-defined as it grades over tens of metres into conformably overlying but
often highly deformed red shales and sandstones. Hence the upper contact
appears to be sedimentary although this has yet to be confirmed by
ltthogeochemistry. The lower contact is clearly tectonic and an L-S tectonite
fabric is well-developed. As well as small clasts, the lower half of the
breccia also contains extremely large (up to lOOm long x 20mwtde) BIF fragments
within the ltthology. The edges of these larger clasts can be clearly seen to
be tectonlcally ground-up by a 'spalding-off' process which produces the
smaller, often euhedral, breccia clasts.

As a whole the unit constitutes a tectono-sedimentary melange which is envisaged
to have formed as a sedimentary wedge above a low dipping shear zone (thrust)
during horizontal shortening across the region. Large scale movement of Fe
ions, Si02_+Au occurred (Fig. 1).

Gold mineralization is found in quartz + tourmaline veins associated with

various structural traps e.g. fold hin_s and minor shear planes including

ultracataclasltes. In the vicinity of these traps pressure solution and
metamorphic segregation features are common which indicate fluid movement and

possible gold mobility from the deformed sediments {and possibly the basement
rocks) into the traps. This fluid migration may have occurred early with

respectto the defomatlonwlth the resultant veins being subsequently slightly
deformed and tectonlcally displaced.

4. A later porphyroblastic overprint of gold-bearing arsenopyrite is seen
locally within the shear zones as well as porphyroblasts of ephesite (a
lithium-bearing brittle mica) and andalusite. These features seem to indicate a
later period of gold mineralization and 'static' metamorphism probably related
to granitic intrusions which provided a heated source (and possibly fluids) for
element mobility and mineralization within the already deformed
volcano-sedimentary pile.

Fig. 1.

Fig. 2.

Schematic representation of the inferred structural evolution (A-D)
across area during Dm_north-central part of the Pietersburg greenstone
belt_ In this scheme, an older (_3.4-3.5 Ga) mafic-ultramafic/BIF
basement is deformed and syntectonically overlain by coarse clastics,
some of which tkre demonstrably derived from the "greenstone basement".

Different aspects of the tectono-sedimentary melange. Upper photo shows
large clast in finer matrix. Mega clasts may be up to 10-20m in
length. Lower photo shows large variations in aspect ratios of clasts.
Cleavage is paPal]e] to the hammer-head.
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Timothy M. Kusky, Department of Earth and Planetary Sciences,

Johns Hopkins University, Baltimore, Maryland, 21218, U.S.A.

The

Many tectonic models for the Slave Province, N.W.T., Canada, and

for Archean granite - greenstone terranes in general, are implicitly

dependent on the assumption that greenstone belt lithologies rest

unconformably upon older gneissic basement. Other models require

originally large separations between gneissic terranes and greenstone

belts. A key question relating to the tectonics of greenstone belts

is therefore the original spatial relationship between the volcanic

assemblages and contended-basement gneisses, and how this

relationship has been modified by subsequent deformation. From the

Slave Province, unconformities have been reported from the base of

the Cameron River Greenstone Belt northeast of Yellowknife, and from

the Point Lake area to the north (Figure 1 and refs. 1,2). What

remains unclear in these examples is the significance of the

so-called "later faulting" of the greenstone - gneiss contacts. Does

the angular discordance between greenstones and gneissic foliation in

the Cameron River example really represent an unconformity, or could

it be better- interpreted as a consequence of the juxtaposition of

two once widely separated terranes? Where unconformities between

gneisses _.,._"_"-'_'-_-_-1-_'_1"'_...._,_o_ ...._ ir_isputable, such as at Point

Lake (and also in the Beling_a greenstone belt in South Africa), the

significance of faults which occur below the base of the vqlcanic

succession also needs to be evaluated. As part of an on-going

investigation aimed at answering these and other questions, I mapped

the extremely well-exposed contact region between the Cameron River

Greenstone Belt and the Sleepy Dragon Metamorphic Complex in the

vicinity of Webb Lake and Sleepy Dragon Lake during the summer of

1985, extending the database of earlier workers (3,4,5,6,7).

The greenstone belt was found to consist predominantly of mafic

pillowed to n_ssive flows and numerous dike complexes. At the

preserved base of the belt these dikes locally retain a sheeted

aspect and display one-way chilling. Subordinate amounts of

pyroclastic rocks and volcanic breccias are also present. Rocks of

the Sleepy Dragon Metamorphic Complex are highly variable, and

include both meta-sedimentary and meta-igneous gneisses, along with

numerous mylonite zones (4,8,9). Older gneisses and mylonites are

intruded by several younger phases of mafic to silicic plutonic rocks

which show different intensities of deformation.

The contact between the Cameron River Greenstone Belt and the

Sleepy Dragon Metamorphic Complex was found to be a half-kilometer

wide zone of very complex structure. All rocks within this

high-strain zone have a strong steeply plunging stretching lineation,

although rocks from throughout the area also have a less-intense

vertically plunging lineation. Transposed layering and intensely

folded quartz segregations are common in this zone; sheath folds with

vertically plunging hinges are present in some localities, indicating

very high shear strains. Macroscopic sense-of-shear indicators are

not abundant but generally suggest that the Cameron River Belt was

thrust over the Sleepy Dragon Complex. Supporting microscopic v_rk
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is currently underway. In one area north of Webb Lake some slivers

of Sleepy Dragon-type gneisses are intercalated with phyllonites of

the major high-strain zone. In this locality, ductile shear zones

cutting the Sleepy Dragon gneisses are oriented in a way that is

suggestive of mylonitization contemporaneous with thrusting of the

greenstones over the gneisses. Further mapping will reveal the

lateral extent of this structural juxtaposition, but it is apparently

the first-documented example of Archean basement-involved thrusting

of greenstones over gneiss in the Slave Province.

Pillow lavas of the Cameron River Belt immediately adjacent to

the basal high-strain zone have aspect ratios exceeding 3:1:1/3. In

an area extending northward from Sleepy Dragon Lake these lavas are

overturned in an isoclinal fold as shown by locally-consistent

younging directions. The axial trace of this fold is parallel to the

contact zone, and the fold's geometry is consistent with formation

during thrusting of the Cameron River Belt over the Sleepy Dragon

Complex. Preliminary mapping of the greenstone belt in the Webb Lake

area has revealed the presence of a few other subparallel shear zones

containing structures similar to those just described; a common

origin is tentatively inferred pending more detailed mapping.

Interpreting the structures within the Sleepy Dragon Metamorphic

Complex is difficult because of the complex deformation history of

this terrane. The only structure which, at this point, can

unambiguously be related to movement along the contact with the

Cameron River Belt is a foliation which trends parallel to and

increases in intensity towards the contact zone. The foliation cuts

earlier structures including folded gneissic and mylonitic

foliations; earlier foliations are folded about this later one (4).

The fact that this late foliation is cut by some plutonic bodies

suggests that a minimum age may be placed on the thrusting and

emplacement of the Cameron River Greenstone Belt over the Sleepy

Dragon Metamorphic Complex.

Numerous mafic dikes are present both at the base of the Cameron

River Belt and within the Sleepy Dragon Complex near it's contact

with the greenstone belt (7). The textures and xenolith contents of

the dikes in the Sleepy Dragon Complex appear to be generally

different from the dikes in the greenstone belt. Deformational and

metamorphic fabrics in the dikes of the Sleepy Dragon Metamorphic

Complex suggest that they are of at least two, and probably three

generations, while only two distinct generations of dikes are

recognized from the Cameron River Greenstone Belt. Pending further

field and laboratory work it is tentatively suggested that (a) the

first two generations of dikes in the Sleepy Dragon Complex are not

directly related to any dikes in the greenstone belt, (b) the

earliest generation of (locally sheeted) dikes in the greenstone belt

is not present in the basement complex, and (c) only the latest,

relatively undeformed dikes are correlatable between the two

terranes.

Although an unconformable relationship has been reported to exist

between the Cameron River volcanic belt and the Sleepy Dragon

Complex, I have not yet observed it. All data collected to-date

indicates that the greenstone belt is allochthonous. Structures at

and near the base of the greenstone belt suggest that it has been

imbricated and thrust over the Sleepy Dragon Complex, incorporating
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Figure I. Map of the Slave Province, N.W.T., showing the

distribution of "greenstone" belts (black), gneiss complexes (cross

hatch), and graywacke sediments (stippled). Symbols: YK=Yellowknife

Greenstone Belt, CR=Cameron River Greenstone Belt, AC=Anton Gneiss
COmplex, PL=Point Lake, AR=Anialik Greenstone Belt. Arrows denote

proposed suture which separates the eastern and western greenstone

terranes. Map after 3 and 12.
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slivers of gneiss in the basal high strain zone in the process. A

crude order-of-magnitude estimate of the amount of displacement

needed to explain the observed deformation between the Cameron River

volcanics and the Sleepy Dragon gneisses is several, if not tens, of

kilometers. Actual displacements are likely to be significantly

higher.

The present poor constraints on the sense and magnitude of

displacement along the fault complex separating the Cameron River

Belt and the Sleepy Dragon Complex, as well as a paucity of similar

data from other preserved greenstone/gneiss contacts in the Slave

Province (Point Lake, Anton Complex; Figure I), allows a set of

"permissible" tectonic models for the Slave Craton to be formulated

at this time. It is tentatively proposed that the Sleepy Dragon

Complex is a preserved remnant of an Andean arc complex. _is

suggestion is inferred because: (I) the prolonged magmatic and

deformational history of this terrane is typical of Andean arc

settings; (2) the generally mafic to intermediate volcanic suite is

similar to that found in Phanerozoic Andean arc settings and; (3) the

composition and intrusive style of plutons is identical to more

recent Andean intrusive suites. The preserved extent of this

Andean-t_e arc complex could be defined by the aerial distribution

of Sleepy Dragon type gneisses (such as the Anton Complex?), which

all seem to occur west of a prominent N-S striking line of

"greenstone" belts and major faults that extends from the Great Slave
Lake to Anialik River Belt on the Coronation Gulf (Figure i).

Volcanic belts to the east of this line have a much greater abundance

of silicic volcanics than belts to the west (12). A preliminary

interpretation of this line is that it represents a suture between

the eastern and western greenstone terranes. The eastern greenstone

belts might represent an amalgamated island arc complex, or a collage

related to a migrating arc-trench system (13), which collided with

and became sutured to the Sleepy Dragon Andean arc complex. While it

is quite possible that no pre-deformational link exists between the

Cameron River and the Yellowknife greenstone belts, their similarity

is conspicuous. Much data suggests that the Yellowknife and Cameron

River "greenstone belts" are back arc basin "ophiolitoids" (i0, ii).

This model is significantly different from earlier studies which

concluded that the basalts were erupted in a continental rift setting

(3). The abundant "Burwash Formation" turbidites do not appear

typical of continental rift deposits but do strongly resemble more

recently deposited syn- to post-orogenic flysch and molasse

sequences. An accretionary wedge origin is also possible for this

complex sedimentary package (13).

Thus, it seems possible that prior to accretion of the island arc

terranes to the east of the N-S striking line of "ophiolitoids", the

Sleepy Dragon Andean arc complex experienced a back arc

rifting/spreading event which formed the Yellowknife and Cameron

River Belts. Some of the Sleepy Dragon gneisses and phyllonites

below the Cameron River Belt, and sediments found at the "base" of

the Yellowknife Belt (Octopus Formation) could represent a

volcanosedimentary sequence deposited during this intra-arc rifting

event or, alternatively, they might be precursory olistostromes

related to the emplacement of the greenstone belts. Further detailed

structural observations are needed to decide between these
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hypotheses.

Structural relationships between the Cameron River Greenstone

Belt and the Sleepy Dragon Complex are thus compatible with either

the emplacement of a back arc basin "ophiolitoid" over the Sleepy

Dragon gneisses, or with the emplacement resulting from the closure

of a major ocean. Similar structural relationships appear to exist

elsewhere in the Slave Province where greenstone/gneiss contacts are

preserved, suggesting that all greenstones terranes in the region may

be allochthonous. It will be interesting to see how these

preliminary models -+_nd up to the test of several more seasons of

detailed field work in the Slave Province.
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SYNSEDIMENTARY DEFORMATION AND THRUSTING ON THE EASTERN MARGIN OF THE

BARBERTON GREENSTONE BELT, SWAZILAND, Lamb, S.H., Research School of Earth

Sciences, Victoria University of Wellington, Private Bag, Wellington, New

Zealand.

Mapping on the eastern margin of the 3.6-3.3 Ga Barberton Greenstone Belt,

NW Swaziland, has revealed a tectonic complex which is more than 5 km thick

(Lamb, 1984a). The area consists of fault bound units made up of three

lithological associations. Some of these have been affected by four phases of
deformation (D1-D4). Fold structures (F1-F4), foliations ($1-$4), and
lineations are associated with the deformation.

The oldest rocks consist of metaigneous rocks (talcose schists,

serpentinite, and quartz-chlorite-sericite schists) interleaved with silicified

fine grained sediments (cherts). These make up the Onverwacht Group, though

deformed (D1) and intruded by meta-ultramafic rocks. Onverwacht Group cherts

locally pass conformably into a circa 1.8 km thick sequence of siltstones,

shales, BIF, with sandstone and conglomerate layers, forming the Diepgezet

Group. The lower part of the Diepgezet Group is interpreted as submarine fan

deposits, and can be correlated with sequences in South Africa referred to as
both the Moodies and Fig Tree Groups (Lamb and Paris, in prep). The Diepgezet

Group is overlain unconformably, with angular discordances of up to 90 degrees,

by at least 1.8 km of coarse clastics (Malalotsha Group). These are interpreted

as fluvial and marginal marine deposits. In certain localities the Diepgezet

Group passes up conformably into the Malalotsha Group through a sequence of
coarse sediments which have been left undifferentiated (Mal/Diep Group). Parts

of the Malalotsha Group can be correlated with the Moodies Group.

Three pronounced angular unconformities occur within the basal lO00m of the

Malalothsha Group. Malalotsha Group sediments are both folded by, as well as

unconformably overlying, D2 fold structures which deform the Diepgezet and

Onverwacht Groups. Folded fault zones (D1) juxtaposing the Diepgezet and

Onverwacht Groups are also unconformably overlain by the Malalotsha Group.
Faults associated with the F2 folding (flexural slip faults) offset Malalotsha

Group sediments, but are also unconformably overlain by younger Malalotsha Group

sandstones and conglomerates. In sequences where the Malalotsha Group is
transitional with the Diepgezet Group, a progressive change is observed in the

clast content of the sandstones. Chert grain dominated sandstones within the

Diepgezet Group pass up into sandstones made up mainly of single crystal quartz
grains. Clasts representing all the underlying stratigraphy, as well as parts

of the gneissic terrain (potassium poor granitoids) are found in Malalotsha

Group conglomerates. Palaeocurrents within the basal Malalotsha Group indicate

polymodal sediment transport directions. This, combined with evidence for rapid

sediment thickness changes and facies variation, suggest that these sequences

were deposited in tectonically controlled (and actively deforming) basins.
However the overall tectonic setting is not clear, though the sediments were

clearly deposited in a compressional regime.

The sedimentary sequences described above are now found within thrust

sheets up to a kilometre thick. These are bounded by thrust faults, subparallel

to bedding, which juxtapose different parts of the stratigraphy. One of these

thrusts emplaces part of the Onverwacht Group on top of the Malalotsha Group,
with a displacement of more than 10 km. The Onverwacht Group here contains a

low angle foliation ($2) subparallel to the bounding fault. The thrust faults
are considered to be a later expression of the D2 deformation, which is seen as

syn-sedimentary deformation structures within the thrust sheets. The D2
deformation caused shortening in northerly and westerly directions.

The thrust sheets and their internal structures have been refolded by tight
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kilometre scale north trending folds, which plunge south at 20-40 degrees (F3).

The folds contain a pronounced axial planar cleavage defined in places by a

muscovite schistosity. The cleavage is most intense near and within marginal

granitoids which were probably intruded c. 3.0 Ga (part of the Mpuluzi

batholith, Barton 1981) Earlier fold structures have been tightened up,
intensifying an axial pianar cleavage fabric in F2 folds ($2/$3). The contact

with intrusive granitoids on the western margin of thestudy area (Steynsdorp

pluton, which may be c. 3.4 Ga, Barton 1981) contains a pronounced foliation

which cuts across intrusive contacts. This is interpreted as an $3 foliation

which contains an intersection and/or stretching lineation plunging at 20-40

degrees NE. The apparent domal pattern of foliations in the marginal parts of

the Steynsdorp pluton is interpreted as both the result of F3 folding of an
earlier foliation ($2) and also the imprint of an $3 foliation. Elongation

lineations in sediments within the greenstone belt may be a result of

subvertical extension during the D3 shortening (e.g. Jackson and Robertson,
1983).

The above structures have been refolded by heterogeneous southeast trending
folds (F4) with the local development of an L4 crenu]ation ]ineation.

It has been suggested (Lamb, 1984a,b) that the high level syn-sedimentary
D2 defomation and subsequent development of a thrust complex was Pelated to
coeval defomation and metamorphism (Jackson, 1984) in the Ancient Gneiss
Complex of southern Swaziland. D2 in the study area predates the c. 3,0 Ga
Mp,jluzi batho!ith= It is not clear what the relation was between D2 and an

early D1 deformation, which occurred during the evolution of the Onverwacht

Group rocks (de Wit, 1982; pers. com.). It is likely to be close as a

continuous depositional sequence is preserved between the Onverwacht and

Malalotsha Groups. The correlation of clastic sequences in the southern part of

the greenstone belt with those in the study area, indicates that the D2

deformation was diachronous with variable structural trends. The presence and

position of unconformities show that NW-SE shortening (D2b) and the deposition

of the Malalotsha Group in the study area post-dates the deposition of the
Moodies Group and N-S shortening (D2a) observed in the southwestern part of the

greenstone belt (de Wit et a1___a.,1983). It is however not clear to what extent
the D2b shortening has rewerked and translated structures which formed in D2a.

Subsequent D3 deformation (coeval with the intrusion of the Mpuluzi batholith,

c.f. Jackson and Robertson, 1983) has had a considerable effect on structures in

the study area, continuing the shortening (E-W) on the eastern margin of the

greenstone belt.
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THE ROCK COMPONENTS AND STRUCTURES OF ARCHEAN GREENSTONE BELTS:

AN OVERVIEW; Donald R. Lowe and Gary R. Byerly, Department of Geology,

Louisiana State University, Baton Rouge, LA 70803.

Much of our understanding of the character and evolution of the

earth's early crust derlves from studies of the rocks and structures in

Archean greenstone belts. Our ability to resolve the petrologic, sedimento-

logical, and structural histories of greenstone belts, however, hinges

first on an ability to apply the concepts and procedures of classical

stratigraphy. Unfortunately, early Precambrlan greenstone terranes present

particular problems to stratlgraphic analysis, some of which we would like

to discuss here. We would also argue that many of the current contro-

versies of greenstone belt petrogenesls, sedlmentology, tectonics, and

evolution arise more from our inability to develop a clear stratlgraphlc

picture of the belts than from ambiguities in its interpretation.

We will here consider four particular stratigraphlc problems that

afflict studies of Archean greenstone belts: (a) determination of facing

directions, (b) correlation of lithologlc units, (c) identification of

primary llthologles, and (d) discrimination of stratigraphlc versus struc-

tural contacts.

(a) Facing Directions: Determination of facing directions in green-

stone belt sequences is often difficult because of the absence of useful

facing indicators throughout great thicknesses of section and because we do

not sufficiently understand the origins of many structures and textures in

Archean sedimentary rock types to be able to use them as facing indicators.

Thick sequencesof massive volcanic rocks, banded black and white cherts,

black cherts, and banded iron formation are inevitably rather stingy in

yielding familiar facing indicators whereas thick turbldltic units, layers

of graded accretlonary lapilli, and sands containing large-scale cross-

stratification are particularly user-friendly in this regard. Facing

directions in banded cherty units are most readily determined from fluid

escape features, particularly pockets of druzy quartz, which originate as

pockets of trapped fluid, usually directly beneath early-llthifled white

chert bands. Geopetal accumulations of debris in cavities, cracks, and at

the bases of early-formed brecclas and the preferential development of

stalactitic dripstone in stratiform cavities (the development of both

stalactitic and stalagmitic drlpstone is also common, but stalagmites alone

areextremely rare) are also widespread and useful as facing indicators in

cherty successions. In all cases where supporting evidence is available in

adjacent sedimentary units, we have found pillow geometry and drain-out

cavities, where developed, to be reliable facing indicators in tholeiites.

Small-scale cross-laminations, load structures, and individual graded

detrital layers must be approached with caution because nearly identical

features can form facing upward or downward. Pillows, where present in

komatlltic sequences, generally lack useful facing information. The recent

trend to quantify the reliability of facing estimates (e.g. 95% confidence)

is misleading inasmuch as the principal errors in determining facing

directions originate not through statistical ambiguities in the structures

themselves but from their mlsidentlflcation by the investigator.

(b) Correlation: The correlation of stratigraphic units within poorly

exposed, structurally complex, highly altered Archean terranes represents a

major challenge to unravelling greenstone belt stratigraphy and evolution.

The absence of useful guide fossils and the paucity of unique, recognizable
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time markers, such as distinctive ash beds, makes this task difficult

relative to similar studies in Phanerozolc terranes. Recent precise zircon

age dating in the Canadian belts is aiding in resolving gross problems of

stratigraphy, but will do little for detailed correlation.

In the early Archean Barberton and Pilbara belts, we have found a

number of features particularly useful in correlation: (I) llthologically

and texturally distinctive layers of airfall and/or turblditlc accretionary

lapilli, (2) individual alrfall ash beds in sequences of orthochemical and

biogenic deposits, (3) airfall spherule layers, (4) distinctive sequences

of non-facies controlled deposits, and (5) rare, facies-related units and

sequences. Least reliable are distinctive successions of environmentally

or petrogenetically controlled lithologies that can be repeated many times

within individual sections as sedimentary environments and magmatic systems

come and go. Even continuous, traceable lithologlc units cannot serve as

unambiguous time markers unless there is independent evidence that they are

not diachronous.

(c) Primary Litholo_les: Perhaps as much as any other problem, our

inability to decipher primary llthologles has hampered the development of a

clear picture of greenstone belt make-up and evolution. It has long been

recognized that early alteration is pervasive throughout greenstone belts.

_nis alteration was for many years considered part of the post-accumulation

metamorphic history of these belts. More recently, however, the trend has

been to attribute alteration to relatively high-temperature exhalative to

shallow-subsurface hydrothermal processes (I, 2) or to low-temperature

metasomatism, perhaps related to the circulation of surflclal waters

through the rock sequences (3).

Interpretation of the primary MgO contents and petrogenesis of koma-

tiites, role of calc-alkaline and subduction-related volcanism, presence or

absence of volcanic cycles, distribution of felsic lavas, nature of meta-

morphism and metasomatism, provenance of detrital sediments, composition of

early surface waters, and sedlmentology of cherty units have all been

stymied to some extent by uncertainties in the composition of the original

sedimentary and volcanic layers. A number of relatively recent studies

have shown clearly that (i) many specific units previously interpreted to

be silicic volcanic rocks are actually sillclfied mafic to ultramafic lavas

(e.g. 2, 3), (ii) many of the "classlc" mafic-to-felslc volcanic cycles are

non-exlstent (4) although large-scale volcanic cyclicity seems to be widely

developed (5), (ill) calc-alkallne volcanlcs, as well as komatiltes, are

abundant in some belts but poorly represented in others, (iv) some belts

exhibit a more-or-less continuous spectrum of rock compositions from

komatiitic to rhyolitic whereas others are strongly bimodal or trimodal;

(v) evaporitic sediments, especlally gypsum, were widespread and abundant

constituents of shallow-water Archean greenstone-belt sedimentary deposits

(6), (vi) relatlvely few, if any, cherty layers represent primary silica

precipitates (7), and (vii) there may be important lithologic and tectonic

differences between early and late Archean greenstone belts (7).

Many of the remaining ambiguities in the alteration histories of these

rocks originate because most studies of alteration are focused on identify-

ing the role or evaluating the influence of one particular style or setting

of alteration. Clearly, some silicification and carbonatization began

concurrently with deposition and involved essentially surface waters at

surface temperatures. The abundance of cherts in shallow-water sequences

but their paucity in deeper-water units (7) suggests that early post-
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depositional fluctuations in water chemistry (e.g. deposition in marine but
early flushing by meteoric waters) may have been an important control on
silicification. Later large-scale recrystallization and replacement almost
certainly occurred both through low-temperature processes, similar to those
affecting modern oceanic crust, as well as during local higher-temperature,
hydrothermal and black-smoker-type metasomatism and mineralization. The
widespread presence of epidote and resetting of isotopic systems, such as
Ar-Ar, clearly argue for still later regional metamorphism, and the locali-
zation of silicification along somejoints and fractures indicates continued
alteration under fully post-tectonic and post-metamorphic conditions.
Future studies must provide unambiguous criteria for distinguishing stages
and environments in this prolonged alteration history, many of which may
leave similar mineralogical and textural records.

(d) Stratisraphic vs. Structural Contacts: Greenstone belt sequences

are characteristically highly deformed, typically showing polyphase defor-

mation and structural repetition through faulting and folding. One of the

principal problems facing structural, stratigraphic, and tectonic synthesis

of greenstone belts lies in distinguishing between structural and strati-

graphic contacts in areas of poor exposure and in the near-absence of

unambiguous tools for relative age determination and correlation. Whereas

it was once fashionable to regard thick, apparently intact, uniformly

facing successions of volcanic and sedimentary rocks in greenstone belts as

forming coherent stratigraphic sections, often in excess of 15 km in

thickness, the present tendency is often to infer that such sequences, at

least on this planet, are composite, formed by the tectonic repetition of

considerably thinner stratigraphic sections.

The problem, now as previously, is the field recognition of faults,

particularly stratiform faults, such as thrusts. In the Barberton belt,

for instance, there are large areas, particularly in upper parts of the

succession, within which nearly stratiform thrust faults are present and

can be easily recognized using conventional means: (I) truncated and

offset s_ratigraphic units and folds, (2) unambiguously repeated strati-

graphic sequences, (3) the development of mylonitic and brecciated zones

along fault planes, and (4) the formation of drag folds in units adjacent

to the faults. However, throughout most of the classic sections of the

Onverwacht Group in the southern part of the belt, major faults identifiable

by such conventional criteria are absent. Although it has been suggested

that most of the apparent 12-km thickness of the Komati, Hooggenoeg, and

Kromberg Formations is an artifact of isoclinal folding of a much thinner

sequence (2), studies of facing directions throughout the section do not

bear out this interpretation (3). Arguments have also been advanced (2,

DeWit, this meeting) that chrome-mica-bearing alteration zones at the tops

of komatiitic units within this sequence represent stratiform shear zones

with displacements of perhaps i-i0 km. Unfortunately, however, these units

display none of the usual characteristics of faults (such as cross-cutting

relationships) and are developed only at the tops of komatiitic flows

(never at the tops of tholeiitic of felsic units). They exhibit cataclasis

and schistosity only where cross-cut by clearly later, through-going faults

or where present in areas where all units show penetrative deformation.

In most sections, these rocks display well-preserved, unsheared primary

spinifex and cumulate textures. Inferences that these zones represent

faults must at some point be based on a systematic consideration of their

characteristics, including clear enumeration of features indicating an
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origin through faulting and the means of determining displacement.

Although it is clear that our ability to unambiguously differentiate

structural and stratigraphic contacts in greenstone belts without fossils

or rather fortuitous combinations of features will remain limited, the use

of conventional criteria cannot be abandoned entirely. The possibility

that thick, stratlgraphlcally intact sequences are present in greenstone

belts must remain as a working hypothesis until internal faults or folds

can be identified based on clearly defined and well-understood criteria.

As noted above, it is our assessment that much of the controversy

surrounding greenstone belt tectonics and evolution originates not from

ambiguities in the genesis of rocks and structures in greenstone belts but

from ambiguities in what those rocks and structures are and were. Future

resolution of these controversies will rest more on careful, systematic

studies of individual aspects of greenstone belts than on broad-brush

syntheses or non-systematlc collections of observations. A clear example

of the success of the systematic approach is the role detailed geochrono-

logical studies have played in resolving the evolution of the late Archean

Canadian belts. These studies (e.g. 5) have confirmed the existence of

large-scale volcanic cycles within the Canadian greenstone belts and the

existence of stratigraphic sections up to I0 km thick.

..................... _ .............. .= oi_il=_iLi=_ _L_d dlffer-

ences among Archean greenstone belts depend significantly on how the term

"greenstone belt" is defined. Presently used definitions (8) range from

exceedingly broad (supracrustal successions in which mafic volcanic rocks

are predominant) to relatively narrow (those requiring specific components,

such as ultramafic or komatiitic lavas, and the increasingly common,

largely implicit definition equating greenstone belts and ophiolites).

Based on consideration of features common to most of the greenstone belts

discussed in the present set of abstracts, we offer the following defini-

tion:

Greenstone belt - an orogen made up largely of mafic to ultra-

mafic volcanic rocks and their pyroclastic equivalents and

epiclastic derivatives, showing intense macroscale deformation

but regionally low grades of thermal alteration, and extensively

intruded by penecontemporaneous or slightly younger granitoid

plutons.

Virtually all terranes commonly considered as greenstone belts are

encompassed by this definition, including many Phanerozoic examples. A

critical aspect of this definition, and one that requires careful consid-

eration, is that the terms "greenstone belt" and "ophiolite" are not

synonymous. Rather, as in Phanerozoic orogens, ophiolites or ophlollte-

like sequences may be components of greenstone belts.

Even with the restrictions imposed by this or most other definitions,

greenstone belts constitute a highly diverse family of terranes. Some

include an essentially continuous spectrum of komatiitic, tholeiitic, and

calc-alkaline lavas, such as many belts in the Superior Province; others

show a strongly bimodal volcanic suite (Barberton). Some are dominated by

eruptive rocks (Superior Province, eastern Pilbara Block, and Barberton),

others by sedimentary units (Slave Province and many Indian belts). The

volcanic sequences in older greenstone belts (Barberton and eastern Pilbara)

accumulated under shallow-water, anorogenic platform conditions; those in
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most younger belts represent deep-water, tectonically active settings (7).
Additional differences have been noted by other investigators (9, I0).
Thesedifferences encompassnearly as muchvariability as represented by
the spectrum of modern orogens. A possible implication of this diversity
is that greenstone belts may represent tectonic settings as varied as those
represented by modern orogenic belts.

The results of most modern studies of greenstone belts suggest that
close scrutiny of individual belts usually allows identification of litho-
logically and structurally analogous modern terranes and, by inference,
tectonic settings. There is an emerging consensus, for instance, that the
petrologic, structural, and geochronological characteristics of large parts
of the Superior Province indicate that it is an assembly of late Archean
volcanic arcs formed along convergent plate boundaries that were basically
similar to volcanic arcs and convergent boundaries today (Card, this
volume). An important dissenting view, however, is expressed by David and
others (this volume). Parts or all of the volcanic sequences of other
Archean belts have been interpreted to represent oceanic or simatic crust
formed at spreading centers.

Using a similar argument, the more-or-less regular vertical strati-
graphic succession in greenstone belts, including lower volcanic and upper
sedimentary stages, is grossly similar to the stratigraphic sequences in
manymodernorogens. If a genetic similarity is indicated, then it may be
expected that individual greenstone belts include rocks formed in an

evolutionary spectrum of tectonic settings. Perhaps, under ideal conditions

of preservation, these may range from cratonic rift and[or ocean floor

settings near the base to volcanic arc and, in some instances, cratonic or

peri-cratonic settings at the top.

At the same time, if we look closely at individual greenstone belts,

many features can be identified that are not present in their younger

analogs. These include the common presence of extensive komatiitic lavas,

banded iron formation, ocean-crust-llke sequences (ophlolites) in excess of

i0 km thick, and regionally extensive shallow-water sedimentary units

deposited in anorogenlc simatic settings. Some of these features, such as

banded iron formation, reflect differences in modern and Archean systems

that are probably unrelated to tectonics. Others, such as unusually thick

ocean-crust sequences and widespread shallowwater simatic platforms, may

reflect important differences between Archean and Phanerozoic tectonic

systems, if not in fundamental character then in local expression.

Future resolution of many of the outstanding controversies of green-

stone belt evolution rests in detailed systematic studies of (i) individual

properties of individual greenstone belts (structural style, alteration,

sedimentology, petrology), (ii) differences among Archean greenstone belts,

and (iii) similarities and differences between Archean belts and younger,

apparently analogous terranes.
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SEDIMENTOLOGICAL AND STRATIGRAPHIC EVOLUTION OF THE SOUTHERN

PART OF THE BARBERTON GREENSTONE BELT: A CASE OF CHANGING PROVENANCE AND

STABILITY; Donald R. Lowe and Gary R. Byerly, Department of Geology,
Louisiana State University, Baton Rouge, Louisiana 70803 USA

The sedimentological and stratigraphic evolution of the 3.5 to 3.3 Ga

Barberton Greenstone Belt can be divided into three principal stages: (I)

the volcanic platform stage during which at least 8 km of mafic and

ultramafic volcanic rocks, minor felslc volcanic units, and thin sedimen-

tary layers (Onverwacht Group) accumulated under generally anorogenic

conditions, (2) a transitional stage of developing instability during

which widespread dacitlc volcanism and associated pyroclastic and volcani-

clastic sedimentation was punctuated by the deposition of terrigenous

debris derived by uplift and shallow erosion of the belt itself (Fig Tree

Group), (3) an orogenic stage involving cessation of active volcanism,

extensive thrust faulting, and widespread deposition of clastic sediments

representing deep erosion of the greenstone belt sequence as well as

sources outside of the belt (Moodies Group).

I. The platform stage of Barberton Greenstone Belt development is

represented by rocks of the predominantly volcanic Onverwacht Group.

Sediments deposited during this stage included (a) dacitic breccias,

conglomerate, and coarse sands deposited as part of and adjacent to felsic

volcanic centers and, less abundantly, proximal mafic lapillistones and

turfs; (b) distal felsic volcaniclastic and pyroclastic layers consisting

mainly of fine ash, dust, and accretionary lapilll, (c) biogenlc deposits

such as carbonaceous oozes, carbonaceous muds, bacterial mats, and locally,

stromatolites, and (d) orthochemical sediments including evaporites,

barite, carbonate, and possibly siliceous deposits. The bulk of these

sedimentary units show clear evidence of having been deposited under

shallow-water conditions. The regional stratigraphic continuity and

sedimentological integrity of sedimentary layers within this sequence, the

predominantly shallow-water depositional setting, and the paucity of

debris derived from the uplift and erosion of older rock sequences indicate

that the overall depositional and tectonic setting was a broad, low-relief,
shallow-water anorogenic platform (i).

II. Rocks traditionally assigned to the Fig Tree Groupwere deposited
during a transitional phase of greenstone belt evolution. These are

exposed in a complex succession of thrust sheets that provide numerous

exposures of each part of the stratigraphic sequence (2). The lowest part
of the Fig Tree is characterized by distal volcaniclastic units and

carbonaceous cherts resembling those in the Onverwacht but showing rapid

lateral facies changes. In particular, 40 to 50 m of predominantly
carbonaceous chert in some structural belts can be correlated with a

sequence of interbedded ultramafic lavas, banded cherts, carbonaceous

cherts, stromatolites, and volcaniclastic units at least 500 m thick in

other areas (2).

The overlying 200 to 500 m of rocks includes two principal components.

By far the greatest thicknesses of Fig Tree strata consist of heavily
altered dacitic pyroclastic and volcaniclastic detritus (3). This succes-

sion includes three main lithofacies: (a) plagioclase-phyric intrusive

rocks that may locally grade into extrusive flows, (b) proximal, plagio-

clase-phyric breccias and conglomerates, probably developed as lava domes

and surrounding coarse epiclastic units, and (c) regionally extensive ash
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deposits, tuffs, and their current-worked equivalents, volcaniclastic
sandstone and siltstone. The bulk of the finely laminated cherty ferri-
ginous sediments characterizing Fig Tree rocks throughout muchof the
Mountain Land represent altered fine-grained dacitic volcaniclastic
deposits. In contrast to previous interpretations, we consider the Fig
Tree to represent a predominantly volcanic interval, perhaps more closely
related petrogenetically to the Onverwacht Group than to the suprajacent
orogenic Moodies succession.

Interbedded with these volcanic and volcaniclastic strata are thin,
lenticular units of chert-pebble conglomerate and chert-grit sandstone
showing rapid lateral facies changes and apparently representing debris
derived from local uplifts within the greenstone belt. Most of the debris
can be identified with underlying silicified rocks of the Fig Tree Group;
there is little evidence for major uplift or deep erosion of the green-
stone belt at this time.

III. Rocks which have traditionally been included within the Moodies
Group represent three main clastic lithofacies: (a) a sequence of quartz-
poor, highly altered sands and fine gravels derived by erosion of the
subjacent dacitic rocks; (b) thick, coarse, chert-clast conglomerate and
chert-grit sandstone derived by weathering and erosion of uplifted parts
of the greenstone belt, and (c) quartzose and locally K-spar-rich sandstone
representing the erosion of sources outside of the greenstone belt,
possibly but not necessarily including the intrusive granitoid rocks
and/or the Ancient Gneiss Complexor its equivalents.

Although the stratigraphic sections in most structural belts can be
correlated with one another, there is as yet no satisfactory reconstruction
of their original relative depositional positions. So-called northern
facies rocks in the Mountain Land also belong to allochthonous terranes
and their present location relative to units to the south is clearly of
tectonic rather than depositional origin.

The overall sequence includes numerousminor unconformities and at
least one major break. Within the Onverwacht Group, pauses in effusive
activity are marked locally by weathering and erosion of flow surfaces,
but no significant formation or accumulation of clastic debris. The
inception of felsic volcanism both in the upper Hooggenoegformation and
the Fig Tree Groupwas accompaniedby minor instability and local erosion
of underlying rocks. Also, the formation of large, high-relief subaerial
felsic volcanic edifices in Hooggenoegand Fig Tree times was followed by
extensive erosion and truncation of these complexes. The major structural
unconformity within the Barberton sequence occurs locally at the base of
the MoodiesGroup. Although a number of apparently conformable Fig
Tree-Moodies transitions occur, over wide areas, the Moodies was deposited
with angular unconformity on rocks as old as the HooggenoegFormation.
This contact has additionally been complicated by structural movement.

The sedimentological development of the Barberton Greenstone Belt
reflects three principal tectonic stages involving three contrasting
sources of clastic sediment. The volcanic platform stage, represented by
rocks of the Onverwacht and Fig Tree Groups, was primarily an interval of
rapid effusion of lavas, subsidence, but little differential tectonic
movement. The main sources of clastic detritus were first cycle, active,
high-relief, felsic and, to a lesser extent, mafic volcanic centers. The
second stage, represented by rocks of the Fig Tree Group, was one charac-
terized by continuing, regionally extensive volcanism and developing
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tectonic instability reflected by the presence of extensive lateral facies

changes and small intra-platform uplifts that supplied shallow-level

intraformational debris to local sedimentary systems. Latest Fig Tree and

Moodies deposition was influenced by concurrent thrusting and orogenesis.

Sediments were derived initially from both shallow and deep levels within

the greenstone belt and, later, from distant quartz and K-spar rich
sources outside of the belt.

REFERENCES: I. Lowe, D. R. (1982) Precam. Res., 17, 1-29. 2. Lowe, D.

R., et al. (1985) Precam. Res., 27, 165-186. 3. Byerly, G. R., and Lowe,

D. R. (1984) Proc. Lunar Planet. Sci. Conf. 16th, p. 101-102.
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EVIOEMCE FOR STRUCTURAL STACKING ANO REPETITION IN THE

GREENS'TONES OF THE KAL(;OORLIE DIS'I'RICT a MESTERN AUSTRALIA

J.E. Rartyn, Esso Australia Ltd., Sydney

I_ROOUCT ION

Host previous stratigraphic intorpretations of the southern part of the Horseman-Wi luna

Greenstone Belt have proposed palycyclic sequences (e.g. I-5). These invoked two and sometimes

three successive sult-es of mafic and/or ultramafic volcanics and intrusives separated by felsic

volcanics and immature clastic sediments, however no distinctive l itt_ological differences were

reported between successive mafic-ultramafic sequences. When interpretations (6, 7), further

to the north, are int_JrateN], a total of four separat-e major mafic--ultramafic suites emrges

for a large part of the Norseman-Wiluna Belt. Although the author does not intend to imply

that all polycyclic stratigraphies are wrong in principle such a situation seems suspiciously

over-complex and stimulates the need to look critical ly at the individual areas where

strat_igraphles have been erected. For the Kalgoorlie area in the south, some of the schemes

have already provoked scepticism (8, 9) and a simpler model consisting of one cycle subject to

struct_ural repetition has been evolved by workers in the Geological Survey of Idestarn Austral ia

(10) for part of this area. The latter authors drew attention to the 'carbon copy' similarity

between the elements of some polycycl ic strattgraphies. Huch more regional ly extensive

intmgratad structural and stratigraphic data is still required to evaluate the relationship

betumm structure and stratigraphy more fully, an objective substantially limited by poor

ontcrop and deep weathering, b_t with due effort: far fret unat_aJrmble.

OUTLINE OF STUOY

Regional mapping by _ author in an area of approximately 20,000 km2 centred on Kalgoorl ie

revealed many problems and armmal ies in several of the published stratigraphic schemes.

However since insufficient critical stratigraphic and structural evidence had been given in

support of the schemes it has not been easy to check _ bases on wlhich tthey were erected.

tel lowing lines of Investigation have been pursued.

The

Regional distribution and intarelationshtps of l ithologically slmi lar sequences previously

regarded as distinct, based on mapping, mineral exploration data, and geophysical

interpretation. Emphasis has been on the mafic-ultramafic suites because they are the most

easy to define and amp.

Critical evaluation of contacts and their associated structural features.

RESULTS

a. General features of the repetition There are several instances where mafic-ultramafic

suites previously proposed as younger (e.g. Coolgardie-Kurr_ang area in 4) (see fig. I) join

or merge with their 'older' counterparts when mapped over various distances. They range in

size from splinter-like splays a few kilometres long diverging from a major matic belt by up to

a ki Iometre, to extensive sheets which are traceable for tans ot ki Iometres as separate

entities before joining with and becoming indistinguishable from their 'older' counterparts.

Some successions are isolated in motasedimantary terrain, and never connect with their

sequences ot origin; however this situation is unusual. In areas where like elements of t_o

proposed cycles are juxtaposed or interconnected (e.g. 1;tidgiemooltha and Spargoville areas in

map of 5) there seems to be no clear reason why they should have been regarded as separate.
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The apparent stratigraphic thicknesses of many of the previously proposed younger

Iafic-ultrmftc sequences is very variable. While they Iay be Ieasurered in ki Icietres in sane

areas, in Imy localities the sequences are attmmated arid deformed. They my he traced for

tens of ki Ionmtres as apparently oonforiable packages of al I or most of the IeJor Iafic and

ultraistic l ithologies, though individual ly these I ithologies may occur as lenses or sheets

hundreds or eve, only tens of mtres in thickness. While such sequences have been interpreted

in the past as volcanic intercalations in a eugeosynclinal sedimentary pile (2, 4), or the

beginnings of nnv volcanic cycles, their degree of deformation and tendency to be miler scale

carbon copies of their 'older' counterparts is more consistent with structural repetition, in

a nidber of instances they are overlain by felsic volcanic r_ks suggesting cycl ic develqxinnt

in a uniformly facing sequence. This is here regarded as evidence that repetition has been

mainly by faulting and not by recIdbent or isocl inal folding.

b. Observations on Contacts

14eny previous stratigraphies (e.g. _-5) have been erechKI in areas vhere fragmentary facing

evi_ suggests thick uniformly facing sequences. The potential for strike dislocations has

general ly bee. overlooked despite heterogeneous shear deformtion. There has been an absence

of critical treatment of major fomational contacts to establ lsh whether they are nonll or

tectenised. This is understandable in s_e instances since such contacts are rarely veil

exposed, hovever di I igent search by the author has revealed many key outcrops. The vast

__ _ ,_ _ _JL. _ _ _.,I iiIIi al i if=i, omJ! iii_| wi Ill alto _aISi i_mmajm"ury ol ,,_:,, W,,.,v,u,,_q_,ll|,,w ev|_,,-,ce _"-_" -" :- --_" "--'l ..:_i._i._ _. :.

polycycl ic stratigraphles. ExtIination of contacts, especial ly basal ones, and the oontact

areas of the previously proposed younger mfic-ultrlific suites, C_ilIonly reveals strong

pene(:onc:ordant shearing, recrystallised I/Ionitic or other cataclastic rocks, or in one

instance (the Kalpini formation Nhlch is the highest Iafic-ultramefic suite of the

interpretation in _), an overturned hat undeforied contact vith clear facing evidence the

reverse of that previously proposed. Napping the relationship hetveen the contact zones and

primary layering often reveals subtle discordances not readily explained by unconformity.

flOOEL

Itmy proposed structural repetitions or fault slices ore linear, others are arcuate and folded

around me,jar upright structures. Linear belts are often control led by throughgoing

transcurrent deformation zones vith pronounced sub-horizontal lineations. Arcuate systems

hovever were oonceivably generated by earl ier processes such as thrusting or gravitational

gliding predating upright folding. Although transcurrent shearing is a feasible aechanism for

repetition for at least same of the more linear belts, it is possible that even many of these

began life as early thrust sheets and became stretx:hed and aligned by later transcurrent

deformation. Early thrusts, recIdbent folds and layer-parallel shear fabrics have been

docummt_l in several local itles in the Mori-Wl IuIta Belt where prevailing strikes deviate

froI the IIW regional grain, or uhere tight upright folding is subdued or absent (e.g. I 1-16).

in one instance (11) a narrow ific-ultrlfic belt in sediments has clearly been generated by

an overthrust. Almost certainly the recognition of this structural style in east-west trending

or gently dmmd areas is a consequence of preservation. It is undoubtedly present also in I

trending linear dmmins but is overprinted and hard to recognise. It is eqphasised that thrust

repetition does not explain all of the previously proposed younger cycles in the district.

Some are a consequence of iisintarpretatlen, by placing too great a significance on isolated

stratigraphic facing observations, or frci attempts to correlate across IIjor upright faults.

Broad regional observations by the author suggest that thrust repetition my he Iuch Ire

strongly developed in the Kalgoorl ie district than elsevhere in the Nori-Wi luna Belt though

this oonclusion is tentative.
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Thrusting does not appear.,fo have occurred on a scale comparable with many Phanerozoic

convergent plate boundaries. There is no evidence of juxtel)osition of strongly conhrasfing

dlomains, or of high pressure metamorphism. There is also a lack of pronounced east-_sf

assymefry across the Norseamn-_di luna Belt as a whole. The h_fonics can be viewed more in terms

of a rearrangement of familiar elements of the local sfrafigral)hY, a situation more consistent

with a closed or infracrafonic setting, rather than an open plate margin. This accords with

models such as those of 17. /ks such, infrabasinal gravity gliding resulting from early uplift

heralding later vertical tectonic events is the most favoured model by the author. This is

consistent with the sedimentation style which is dominated by furbldites _ includes debri

flow deposits. Olistosfr(x_s have also been reported (Taylor, in 18). in stem respects the

scheme resembles one proposed for the Barberfon Greensfcxn_ Belt (19). Felsic volcanism was

intimately associated with sedimentation, and if is possible that concomitant granitic

intrusion into a (lense sheet of mafic-ulframafic volcanics may have triggered the instability

that first led fo the sedimentation and later te gravity gliding tectonics. Subsequent folding

and faulting of the tectonical |y stacked sequence would have create<l the i l lusion of a

polycycl ic sequence which has suffered only upright folding and shearing. The upright tectonic

event_ have prated their own set of interpretive problems. Peneplenafion, and Tertiary

laterific weathering ultimately obscured much of the import-ant evidence. The proposed tectonic

history is summrised in fig. Z.
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Scheamfic representation of sequence of

events producing structural relxifific._.
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gilding and thrusthing leading to
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THE MICHIPICOTEN GREENSTONE BELT, ONTARIO; George E. McGill and

Catherine H. Shrady, Dept. of Geology and Geography, University of

Massachusetts, Amherst, MA • 01003

The southwestern part of the Michipicoten Greenstone Belt includes

a I00 km 2 fume kill extending northeastwards from the town of Wawa,

Ontario. Except for a strip along the Magpie River that is covered by

Pleistocene gravels, outcrop in the fume kill averages about 30-50%.

Within this area are all the major lithologic belts characteristic of

the southwestern fourth of the Michipicoten Greenstone Belt. All of

the area mapped to date lies within Chabanel Township, recently mapped

at 4" = I mile by Sage et al. (i). Following a brief reconnaissance

in 1983, mapping at a scale of I" = 400' was begun within and adjacent

to the fume kill in 1984. We have concentrated on two objectives:

i) determination of the geometry and sequence of folding, faulting,

cleavage development, and intrusion; and 2) defining and tracing litho-

logic "packages", and evaluating the nature of the contacts between

these packages. Results for objective I) are discussed in a companion

abstract (2); this abstract will present tentative results for objective

2).

The entire Michipicoten Greenstone Belt has experienced relatively

late movement on steep faults, most of which trend approximately NNW

or NE (1,2,3). Some of this movement preceded the emplacement of diabase

dikes, some followed. These displacements may be easily removed in
order to reassemble older structures, which are of much greater tectonic

interest.

For mapping and descriptive purposes, it long has been customary

to divide the stratified rocks of the Michipicoten Greenstone Belt

into 4 major lithologic groups (1,3): marie-intermediate volcanics,
intermediate-felsic volcanics, clastic sediments, and chemical sediments

(including iron formation). This is certainly valid, because outcrop

belts of these groups maintain integrity for long distances. However,

there are along-strike intergradations among them, and there is no

easy way to correlate between physically separated belts of similar

lithology. This last problem means that there is no really dependable

belt-wide stratigraphy, and relative ages of the various belts of similar

lithology are known only in the few places where modern radiometric

ages have been measured (4,5).

Our detailed mapping (Fig. i) indicates that the situation is

more complex than one would infer from published maps and descriptions

(1,3,6). There are several lithologic packages within the single belt

of elastic sediments in Chabanel Township, all of which appear to be

bounded by fault contacts. In some cases, stratigraphic way up reverses

across these faults, in other cases it does not. At map scale, the

package boundaries follow bedding or volcanic layering on one or both

sides, but locally this is not so, and at outcrop scale it commonly
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MiCHIPICOTEN CAt(irNSTON( BELT. ONTARIO
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Fig. I. Geologic sketch map of the central part of Chabanel Township,

Ontario. All intrusive igneous rocks omitted for simplicity.

B-B' and A-A' indicate corresponding points across late faults.
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is not so. In places, these faulted boundaries are characterized by

locally developed cleavages, excessive flattening or elongation of

pebbles, or minor folds.

The area we have mapped seems to be a zone of faults and folds

separating a large region to the south underlain by overturned rocks

with tops north from an even larger region to the north underlain by

overturned rocks with tops south (1,6). This relationship would seem

to indicate an antiformal fold in the inverted limb of a very large

nappe, but we have not been able to define such a structure, and rocks
that should correlate across the structure are not the same age (R.

Sage, pers. com.). Major faulting thus is necessary, but earlier or

synchronous folding at township or larger scale would seem necessary

to account for the opposed overturning. Almost all of the rocks north

and south of our area are volcanic, so it may never be possible to

determine if these terranes consist of continuous sections or if they,

too, are divided into fault-bounded packages.

Because we have yet to sort out the sequence of minor and major

structures with sufficient confidence, and because completed detailed

mapping covers such a small fraction of the total belt, we prefer to

be rather conservative about interpreting our data. Key observations

include a "stratigraphy" that consists mostly of fault-bounded

"packages", the apparent early age of these faults, and the large areal

extent of the inverted sequences facing each other. The most attractive

and probably the simplest explanation for these relationships involves

early imbricate thrusting--before the imposition of the almost universal

steep dips. However, this interpretation remains to be proved.
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From considerations of secular cooling of the Earth and the slow decay of

radiogenic heat sources in the Earth with time, the conclusion that global
heat loss must have been higher in the Archean than at present seems

inescapable. The mechanism by which this additional heat was lost and the

implications of higher heat loss for crustal temperatures are fundamental

unknowns in our current understanding of Arehean tectonics and geological

processes. Higher heat loss implies that the average global geothermal

gradient was higher in the Archean than at present, and the restriction of

ultramafic komatiites to the Archean and other considerations suggests that

the average temperature of the mantle was several hundred degrees hotter

during the Archean than today (1). In contrast, there is little petrologic

evidence that the conditions of metamorphism or crustal thickness (including
maximum crustal thickness under mountains) were different in Archean

continental crust from the Phanerozoic record (see 1). Additionally, Archean

ages have recently been determined for inclusions in diamonds from Cretaceous
kimberlites in South Africa (2), indicating temperatures of 900 to 1300 degC

at depths of 150 to 215 km (45 to 65 kbar) in the Archean mantle (3), again

implying relatively low geothermal gradients at least locally in the Archean.

In this contribution the thermal implications of metamorphism are examined,

)..4+_.___°_"I _,_A to........._,eenatone belts., and a new thermal model of the

!continental llthosphere is suggested which is eonslstent with thick

continental lithosphere and high asthenosphere temperatures in the Archean.

High-grade metamorphism is common in Archean terrains (_, 5), and

includes some greenstone belts, such as in the Yilgarn block of SW Australia

(6). High metamorphic temperatures (700 deEC or more) and often high

metamorphic pressures (5 to 10 kbar or greater) are indicated by the mineral

assemblages in these terranes, and they are underlain in most oases by

continental crust of normal thickness (7, 8). Conductive thermal relaxatlon

models have been proposed to predict the thermal conditions of metamorphism in

the crust following tectonic activity such as underthrustlag (e.g., 9-11). As

demonstrated by Ashwal and Morgan (7), however, slmple thermal relaxation of

thickened crust cannot reasonably produce the high temperatures required by

granulite metamorphism with a thick section of crust (30 km or more) below the

shallowest depth of Eranullte metamorphism without requiring the lower part of

the crust to be supersolidus. Basically the temperature range for granullte

metamorphism is so close to estimates of the crustal solldus for reasonable

crustal compositions (e.g., 12), that a positive geothermal gradient below the

shallowest depth of Eranullte metamorphism causes the geotherm to intersect

the solldus above the Moho. Ashwal and Morgan (7) conclude that unless

granullte metamorphism occurs only near the base of the crust and the thick

section of crust now below the exposed granulites was added after

metamorphism, major crustal ma_matlc activity is associated with granulite

metamorphism. Such extreme thermal conditions are not required by lower

grades o_ metamorphism, but any metamorphic gradients which indicate a high

geotherm suggest the upward transport of heat by magma unless the crust is

thin.

I_ it is accepted that ma_matic heat transport is an essential component

of the crustal thermal regime during the peak thermal conditions recorded by

the metamorphic mineral assemblages in the crust (at least where high

geothermal gradients are indlcated), then maximum temperatures recorded in
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these systems were buffered by the solidus. The occurrence of young

granulites at the top of sections of normal thickness crustal sections

similarly indicates that modern maximum geothermal gradients are buffered by

the solidus. A similar conclusion is indicated by heat flow data from areas

of recent tectonism in which high heat flow must result from magmatic heating

of the crust (e.g., 13). Maximum temperatures at shallow depth are buffered

by the boiling point curve at hydrostatic or llthostatlc pressures, below

which maximum temperatures are buffered by the crustal solidus. As these

maximum crustal temperatures are commonly encountered in areas of active

tectonism and magmatism today, it is impossible for maximum temperatures

recorded by Archean metamorphic assemblages to have been higher than modern

maximum temperature conditions unless the solidus was different. Thus, in

this buffered system, higher heat loss in the Archean is not expected to be

recorded by metamorphic assemblages indicating higher geothermal gradients

than peak modern conditions, although these peak crustal thermal conditions

may have been more widespread in the Archean than at present.

The occurrence of high-grade (granulite) metamorphism in Archean

greenstone belts suggests that either the hlgh-grade areas were produced near

the base of the crust and subsequently the crust has been thickened below the

hlgh-grade terranes, and/or magmatism was an important process during the

high-grade metamorphism. The intimate association of plutons with the

greenstone belts in "granite-greenstone" terranes suggests the importance of

magmatism during this high grade metamorphism, and is consistent with models

which suggest basal melting of stacked simatic thrust sheets during the

evolution of at least some greenstone belts (14-16).

Perhaps the most paradoxical indicator of Archean thermal conditions with

respect to higher global heat loss is the relatively low Archean geothermal

gradients indicated by the formation of diamonds of Archean age. The diamond

stability field is consistent with geotherms predicted for modern shield areas

with thick (150 km or greater) lithosphere (e.g., 13); Meyer (3) has

suggested that diamonds were formed in the asthenosphere which in turn

suggests that perhaps the higher temperatures deduced for the Archean mantle

from the occurrence of komatiitic lavas were not universal. A more common

interpretation of the diamond data is that they indicate the existence of

thick "keels" of subcontinental lithosphere below at least some areas during

the Archean (I, 16). However, as the lithosphere is intimately related to the

thermal boundary of upper mantle convection, it would be expected that this

boundary layer and the lithosphere would have been thinner during the Archean

with higher global heat loss and mantle temperatures. A possible solution to

this paradox may be found in the intrinsic heat production of continental

lithosphere.

There are two basic variable parameters that control the stable thickness

of the continental thermal boundary layer (lithosphere), the heat production

within the layer and the heat input to its base (13, 17). The layer thins if

heat input to its base increases, and thickens if the heat input decreases.

This heat input depends upon the temperature difference between the lower

portion of the stable boundary layer and the underlying convection cell, or

more specifically the temperature gradient in the lowest portion of the layer.

As this gradient decreases to zero, the heat input to the base of the

lithosphere decreases to zero (negative gradients are not permissible in a

stable thermal boundary layer). The thickness of stable continental

lithosphere with zero heat input at its base is independent of the global heat

loss, assuming that the heat can be lost elsewhere (oceanic and other

continental lithosphere), and this may possibly be a mechanism for maintaining
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thick continental llthosphere at a time of high global heat loss and high
average mantle temperatures.

The condition for zero heat flux into the base of the stable continental

lithosphere is that the temperature increase within the lithosphere due to its

intrinsic radiogenic heat production creates a geotherm that is asymptotic to

the asthenosphere isotherm (or adlabat with an adiabatic basal heat flux).

For thick lithosphere this condition requires a small but siEnifloant

component of heat production in the mantle llthosphere, and an example of such
a heat production distribution and geotherm are given in Figure I. This

condition has the interesting property that thicker lithosphere is indicated

for higher asthenosphere temperatures for similar heat production
distributions. If heat production distributions of this type are realistic it

is unlikely that they are accidental (see alsO 18), and the concentration of

radiogenic heat production into the lithosphere by metasolatlsm and crustal

buildlnE processes may be related to the stabilization of continental

lithosphere.
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GEOCHEMICAL CHARACTERS AND TECTONIC EVOLUTION OF THE

CHITRADURGA SCHIST BELT: AN ARCHAEAN SUTURE (?) OF THE

DHARWAR CRATON, INDIA. S.M.NAQVI, NATIONAL GEOPHYSICAL

RESEARCH INSTITUTE, HYDERABAD, INDIA.

The Chitradurga schist belt extending for about 450 km in a

NS direction and 2-50 km across, is one of the most prominent

Archaean (2.6 b.y.) tectonic features of the Indian Precambrian

terrain, comprising about 2 to i0 km thick sequence of

volcanosedimentary rocks. The basal unit of this belt is

composed of an orthoquartzlte-carbonate facies, unlike many other

contemporary greenstone belts of the Gondwana land which begin

with a basal mafic-ultramafic sequence. Eighty percent of the

belt is made up of detrital and chemogenic sediments, their

sucession commencing with a poorly preserved quartz pebble basal

conglomerate and current bedded quartzites which, in turn, rest

on tonalitic gneisses, the latter having been further remobilized

alongwlth the schist belt. Deposition of current bedded mature

arenites indicate the existence of platformal conditions near the

shore line. Polymictic graywacke conglomerates, greywackes,

shales, phyllites, carbonates, BIFs (oxide, carbonate and

sulfide) BMF's (Banded Maganese Formations) and cherts Uhus

constitute the main sedimentary rocks of the belt. The

polymictic conglomerates contain debris of rock_ of oide:

greenstone sequences, as well as an abundant measure o_ folded

quartzltes, BIF's and gneissic fragments which represent earlier

orogenies.

Four different types of greywackes are recognised in the belt

from N to S. Most of these have been derived from the

surrounding tona!itic gneisses which contained older greenstone

sequences as enclaves of various dimensions. However, the

younger sequences in the north contain debris from the intrabasin

volcanism also. The K-granites and gneisses are found to be

progressively abundant in the source area of these graywackes as

indicated by the granitic component of the debris of the younger

graywackes sequences. Their REE patterns are characterized _y

both positive and negative Eu anomalies, the latter especially in

the interbedded shales with grewackes. Geochemistry of the

graywackes and chemogenic sediments thus indicate their deeper

oceanic environment of formation. Although stratigraphic

relation between the shallow water and deeper water sediments is

uncertain, the basal orthoquartzites-carbonate sequences

indicating platformal environment perhaps represent a facies

change due to shallow water conditions along the shore line, and

the greywacke suite those of deeper water away from it. Similar

facies change is observed in the BIF's from shallower oxide to

deeper sulfide facies.

The ultramafic rocks, mostly found in the lower sections of

the belt, show pillow structures and spinifex texture and are

komatiitic in composition. The mafic, intermediate and acid

volcanlcs are found as detached outcrops in presumably higher

ORIGINAL PAGE IS
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stratigraphic sections and show tholeiitic and calc alkaline

affinities, probably produced by 5-15% meltlng. The ultramafic

lavas were produced by deeper mantle melting source, the

geochemical characteristics belonging to the oceanic class.

Most of the rock suites in the belt have been metamorphosed

to greenschist facies. However, its eastern margin is found to

be in thrust contact with the higher amphlbolite facies rocks

(700°C at 6-7 Kbr), and the southern part near Mysore consist

of predominantly ultramafic rocks metamorphosed to amphibolite

and granulite facies. The northern part of the belt near Gadag

is least metamorphosed. Irrespective of the grade of

metamorphism or of inferred ages of the various stratigraphic

groups, the belt shows a remarkable structural homogeneity of 3

phases of deformation from N to S and E to W and a convexity

towards East. Both major and minor F1 folds are tight isoclinal

with shallow to steep plunges and subvertical to subhorlzontal

axial planes. The variation in the attitude and orientation of

the F1 axes has been controlled by the F2 episode which has

coaxially folded both the subparallel bedding and the first

ge,=L_L_uu _A_I pl_u_ schlstoclLy cleavage. Only at F1 hinges

the intersection between S1 and $2 is discernible. F3 is found

as general warps on F2 limbs. The F1 axial plane schistocity

cleavage and F2 crenulation charge are generally dipping

(horizontal to subvertical) towards the east. High grade rocks

on the eastern margin have been thrust westwards over the low

grade central part. Structural data indicate considerable

crustal shortening along the belt. Inversion of stratigraphic

sequence is reflected, at many places by the youning directions

obtained from current bedding, graded bedding and pillow

couvexities. Horizontal compression and collision tectonics

therefore, appear to have played a significant role in the

development of the structural configuration of thebelt.

As the 3000 m.y. old gray banded gneisses, found on the

eastern and western sides of the Chitradurga schist belt are

similar, the existing observations suggest the following two

possible models: i) The belt developed in a rift on the juvenile

Archaean continental crust which collapsed upon loading by

sediments, resulting in a shallow subduction and horizontal

compression. (ii) The belt evolved on an "Oceanic" crust between

two juvenile continental blocks to the East and West. Shallow

subduction and horizontal movement of the Eastern block would

then result in the present structural geometry and consequent

welding of the two along this probable suture.
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The lower part of the Serra dos Carajas belt (Fig I) is the metavolcanic

and metasedimentary Grao Para Group (GPG) (I-6). The GPG is thought to

unconformably overlie the older (but undated) Xingu Complex, composed of

medium and high-grade gneisses and amphibolite and greenstone belts. The

Lower Metavolcanic Sequence of the Grao Para Group (LMS) is estimated to be

about 4-6 km thick, consisting of massive, vesicular, and porphyritic mafic

volcanic flows and agglomeratic breccias and about 10-15% massive,

flow-banded, brecciated, and tuffaceous prophyritic rhyolite (6). The LMS is

overlain by the extensive, 100-400 m thick, and high,grade banded iron

formations of the Carajas Formation, followed by an Upper Sequence (US) of I-3

km of mixed volcanic and clastic and chemical sedimentary rocks. The

stratigraphy of the US is poorly known, but it is thought to contain some

quartz-rich arenites, suggesting mature continental provenance (6). Much

thicker quartz-rich sandstones and conglomerates overlie the Upper Sequence,

with unknown degree of conformity.

Petrographic, geochemical, and isotopic analyses of the bimodal

metavolcanics of the LMS show these to be basalts, basaltic andesites,

trachyandesites (shoshonitic), and rhyolites (6,8). Spilitic alteration is

locally apparent, but the coherence of alkali element ratios and

readily-altered trace element compositions suggests that most samples did not

undergo strong alteration. Good correlation between HREES, Ti, and magnesium
number in the mafic rocks demonstrate the effects of fractional

crystallization in the mafic rocks. LREES, Si, K, Rb, Cs, and Ba do not

correlate with magnesium number, suggesting that variable enrichments of these

elements (fig. 2) reflect variable contamination of the basaltic melts with

crustal material. Several contamination components must have been involved,

since these elements are only weakly correlated among themselves, and with U,

Th, Nb, and Ta. Rhyolite patterns show significant negative Eu anomalies.

Zircons from two quartz porphyritic rhyolites give an age of 2758 + 39 Ma

(7), the best estimate of the age of eruption of the LMS. Rb-Sr whole-rock

analyses of mafic rocks yield an isochron of 2687 + 54 Ma, similar within the

range of calculated errors of the zircon age. Thus the GPG's Late Archean age

is well established. The high initial Sr isotopic ratio 0.7057 for the mafic

rock isochron is significantly higher than values of CHUR (0.7012, 9) or

depleted mantle (0.7008, 10) for 2758 Ma. This indicates contamination by

older continental crust. Sm-Nd results are too restricted in distribution to

yield a usable isochron.

e Sr vs. e Nd values (Fig. 3) show a cluster around e Sr +50 and e Nd

+3. These indicate that the magma was more likely derived from a depleted

source than from a CHUR-like source. The high e Sr values are probably either

the results of seawater interaction, leaving Nd isotope ratios intact; or

contamination with older, presumably mafic crust that had elevated Rb/Sr

ratios, but mantle-like Sm/Nd ratios. One rhyolite has similar e Nd and e Sr

values, suggesting derivation from similar sources by similar processes.

Three of the mafic samples have negative e Nd and positive e Sr values,

possibly indicating contamination by older granulitic and granitoid crust.

Note that the ranges of diversity in the e Sr and e Nd data can be seen in the

basalts alone: the isotopic variation does not correlate directly with silica

content. Diverse sources of contamination are indicated, and might be found
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in the diverse lithologies of the underlying Xingu Complex.

The geochemical data indicate that the GPG has many features in common

with ancient and modern volcanic suites erupted through continental crust.

The mafic rocks clearly differ from those of most Archean greenstone belts,

and modern MORB, IAB, and hot-spot basalts. The geological, geochemical, and

isotopic data are all consistent with depostion on continental crust,

presumably in a marine basin formed by crustal extension. The isotopic data

also suggest the existence of depleted mantle as a source for the parent

magmas of the GPG. The overall results suggest a tectonic environment,

igneous sources, and petrogenesis similar to many modern continental

extensional basins, in contrast to most Archean greenstone belts. The

Hammersley basin in Australia and the circum-Superior belts in Canada may be

suitable Archean and Proterozoic analogues, respectively.
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POLYPHASE THRUST TECTONICS IN THE BARBERTON GREENSTONE BELT.

[. Paris. 2 Passage du Chantier, Paris 75012, France and, as of March i, 1986,
Dept. of Geology, University of Canterbury, Christ Church, New Zealand.

In the circa 3.5 by old Barberton greenstone belt, the supracrustal rocks
form a thick and strongly deformed thrust complex. Structural studies in the
southern part of the belt have shown that 2 separate phases of over-thrusting

(D1 and D2) successively dismembered the original stratigraphy. Thrust
nappes were subsequently refolded during later deformations (D 3 and D4).
This poster deals with the second thrusting event which, in th_ study region
appears tO be dominant, and_ke the earlier thrusting), affects the entire
supracrustal pile.

The supracrustal rocks form a predominantly NE/SW oriented, SE dipping
tectonic fan (the D9 fan) in which tectonic slices of ophiolitic-like rocks
are interleaved with younger sedimentary sequences of the Oiepgezet and
Malalotcha Groupsl (Fig. 1). Two distinct levels of decollement can be
distinguished within this fan: (1) Within the ophiolitic sequence, usually below
the pillow lavas. These zones are _eT_-n'eated by strongly sheared serpentinite
lenses and talcose schists. Asbestos fiber is commonly developed in such
sheared lenses, as for example in the Havelock and the Msauli asbestos deposits.
(2) At the base of the Diepgezet Group, within ferruginous shales and banded
cherts. This upper decollement zone is not always obviously sheared, but it is
ubiquitously folded in a disharmonic manner and is thought to have been gravity
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laminated rocks at this stratigraphic level are conformably to unconformably
overlain by a 2 to 3 km thick medium to coarse grained clastic sequence (the
rest of the Diepgezet Group and the Malalotcha Group; the Malalotcha Group is
derived from a quartz-rich source and from the reworking of folded Diepgezet

Material). (2) Within the D2 fan individual tectonic units may be folded
independantly of one another (Fig: 2). The D2 folds are mostly isoclinal,
with fold axes broadly parallel to the thrust contacts (Fig. 2_, and are
contemporaneous with the emplacement of the nappes. Another set of D? folds
is contemporaneous with the deposition of the Malalotcha Group sediments and
probably formed in tectonically ponded basins, during periods of thrust
propagation along the lower decollement level.

Structural and sedimentological data indicate that the D2.tectonic fan
was formed during a prolonged, multi-stage regional horizontaT shortening event
during which several types of internal deformation mechanisms were successively
and/or simultaneously active. Movement appears to have been predominantly to

the NW and to the H. During D_, periods of quiescence and sedimentation
followed periods of thrust propagation. Although the exact kimematics which led
to the formation of this fan is not yet known, paleoenvironmental

interpretations together with structural data suggest that D2 was probably
related to (an) Archean collision(s).
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Much attention has been focussed on the nature of Archean tectonic processes
and the extent to which the), were different from modern rigid-plate tectonics. The
Archean Superior Province (l) has linear metavolcanic and metasediment-dominated
subprovinces of similar scale to Cenozoic island arc-trench systems of the western
Pacific (2), suggesting an origin by accreting arcs (3,4). Models for the evolution of
metavolcanic belts in parts of the Superior Province suggest an arc setting (4,5) but
the tectonic environment and evolution of the intervening metasedimentary belts are
poorly understood. In addition to explaining the setting giving rise to a linear
sedimentary basin, models must account for subsequent shortening and high-
temperature, low-pressure metamorphism (6-8). Correlation of rock units and events
in adjacent metavolcanic and metasedimentary belts is a first step toward
understanding large-scale crustal interaction. To this end, zircon geochronology has
been applied to metavolcanic belts of the western Superior Province (9-13); this study
reports new age data for the Quetico metasedimentary belt, permitting correlation
with the adjacent Wabigoon and Wawa metavolcanic subprovinces.

The 10-100 km-wide Quetico belt extends at least 1200 km from beneath cover
in the west to the Kapuskasing structure and probably continues 800 km further east,
as the Opatica belt. It is mainly fault-bounded against adjacent metavolcanic rocks
but stratigraphic contacts are present locally. The belt consists uf =,,=6_,,=. =vnes v=
metasedimentary schist and an interior zone of migmatite and granite. Marginal
metasediments have preserved sedimentary structures suggesting a homogeneous
sequence of turbiditic greywacke, possibly derived from adjacent volcanic highlands
(1#). Conglomerate and cross-bedded sandstone of the Seine Group (iS) occur
sporadically along the northern margin of the belt and have been interpreted as
proximal fan deposits of the Quetico turbidites (16) or as a younger sequence (15,17).

The most prominent structural features of the belt are the regular east-trending
bedding which dips steeply near the margins and moderately in the interior, and a
pervasive, gently east-plunging lineation. Several early sets of folds have been
recognized in detailed studies (18-20). Symmetrical low-pressure metamorphic
zonation characterizes marginal schists, where grade increases from chlorite-
muscovite at the margins, through biotite, staurolite, and garnet-andaiusite zones, to
garnet-cordierite-sillimanite grade adjacent to the interior zone of migmatite and
intrusive granite. Common assemblages of garnet-andalusite throughout marginal
schists and locally in the interior indicate low metamorphic pressure (bathozone 2;

3.3 kbar (21)). Granulite facies occurs in the east near Flanders Lake (22) and

adjacent to the Kapuskasing zone (23), where metamorphic pressure is 4-6 kbar (24).
The regional metamorphic culmination is coincident with interior plutons, suggesting
that the granites transmitted heat to high levels in the crust.

Plutonic rocks, classified into three compositional groups, have restricted spatial
distribution: 1) a suite of small diorite-monzonite plugs cuts marginal schists and
extends locally into adjacent metavolcanic belts; 2) biotite-magnetite leucogranite
with local tonalite and amphibolite inclusions, occurs near the schist-migmatite
contact; and 3) peraiuminous granite, with garnet, cordierite, muscovite, sillimanite,
apatite and tourmaline, are prevalent in the interior zone, particularly the Sturgeon
Lake batholith (8). Late pegmatites are ubiquitous in the interior zone and common in
the higher-grade parts of the marginal schist unit.
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U-Pb zircon geochronology in the Wawa subprovince indicates major volcanic
activity between 27_5 and 2656 Ma (25) followed by D1 deformation at about 2656,
deposition of alkaline ("Timiskaming")yolcanics at 2685, D2 deformation, and intrusion
of post-tectonic plutons at 2681+ Ma (5).to 2668 Ma (26) (Fig. l). In the Wabigoon
subprovince, volcanics were erupted in the interval 2755-2702 Ma, with post-tectonic
plutons younger than 2655 Ma (12) (Fig. 1).

A chilled porphyritic dacite sill cutting biotite=grade Quetico metasediments
yielded an imprecise U-Pb zircon date of 27_3 • 16 Ma, providing a minimum age for
sediment deposition. A single tonalite clast from metaconglomerate at Max Creek,
interpreted to be Seine equivalent, has zircons dated at 268_ • 10 Ma, interpreted as
the age of the source pluton. Together these dates show that the Quetico
metasediments and Seine Group are not facies equivalent. Monazites from the
geologically oldest plutonic rock type, a foliated biotite granite with zircons with
relict cores, are discordant, with an upper intercept of 268_ Ma. Monazite from
massive peraluminous granite with probable inherited zircon is concordant at 2670 Ma.
Zircon and monazite from a pegmatite dyke form a discordia line with an upper
intercept of 2671 Ma (Fig. 1). The data do not permit definition of the length of time
of sediment deposition nor is the thickness of the sequence known; thus inferences on
lithospheric thickness (28) cannot be made.

Preliminary synthesis suggests that sediment deposition on extending crust
forming the Quetico basin probably occurred during volcanism in adjacent terranes,

possibly continuing until volcanism ceased. Closure of the basin during D I and/or D 2
events, dated in adjacent belts, led to folding of the sedimentary pile and thickening of
the weak crust. Conglomerates were deposited adjacent to marginal transcurrent
faults. During subsequent thermal relaxation, partial melts were extracted from lower
crustal metasedimentary and tonalitic rocks in a crustal root zone as well as from the
mantle. The derived granites and diorites ascended passively to within I0 km of the
surface, producing a regional low-pressure aureole in the host schists. A back-arc or
inter-arc setting is favoured over an accretionary prism environment for the Quetico

sediments because of its symmetry and high-temperature metamorphism which
probably occurred in a region of high heat flow.
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Introduction

Greenstone belts are an important part of the fragmented record of crustal
evolution, representing samples of the magmatic activity that formed much of Earth's
crust. Most belts developed rapidly, in less than IO0 Ma, leaving large gaps in the
geological record. Surrounding terrains provide information on the context of
greenstone belts, in terms of their tectonic setting, structural geometry and evolution,
associated plutonic activity, and sedimentation.

Tectonic Settint_

Major controversy exists as to whether greenstone belts were deposited in
oceanic, or marginal oceanic (1-3) or on rifted or thinned sialic crust (4-8). Archean
volcanic sequences have much in common with Cenozoic volcanic arcs in terms of
linear arrangements, rock types, and sequences, including calc-alkalic volcanic cones
built on basal, subaqueous tholeiitic flows, Life spans are 5 to 20 Ma for individual
volcanoes and 50 to 100 Ma for individual greenstone belts; some granite-greenstone
terrains have several volcano-plutonic cycles differing in age by 200-300 Ma.
Associated sediments consist of thin sequences of iron formation, chert, carbonate,
and shale, and aprons of immature volcanogenic turbidites. Significant differences
include the relative abundance of komatiites, the bimodal nature of some Archean
sequences compared to the dominantly andesitic Cenozoic volcanoes, and the paucity
of shelf sediments in Archean belts.

Direct evidence of oceanic settings for greenstone belts is rare. A well-

preserved ophiolite sequence of Early Proterozoic age is reported from the Kainuu
area of Finland (Kontinen, A., written communication, 1985) and a dismembered

Archean ophiolite sequence has been interpreted in the southern Wind River Range (9).
Neither is evidence for a dominantly continental setting compelling. Although sialic

basement to the 2.7 Ga greenstone belts of the Slave and Superior Provinces of Canada
has been recognized or inferred at several localities (4,10-13), most granitoid rocks
are intrusive into, or in tectonic contact with, the volcanic rocks. Plutonic rocks,

commonly with remnants of still-older supracrustal sequences, formed the basement
to some volcanic piles, in a continental, micro-continental, or dissected arc setting.

A minor but significant component of Late Archean greenstone belts of the
Superior Province is alkaline volcanic rocks, commonly associated with coarse
alluvial-fluvial sediments, that unconformably overlie the major volcanic-plutonic
successions, only a few Ma older (14-16). These sequences have many similarities to
shoshonites formed in recently stabilized arcs (17).

Relationship of Greenstone Belts to Surroundin_ Terrains
In addition to rare unconformable relationships, fault, intrusive, and conformable

depositional contacts characterize greenstone belt margins. Structure within

greenstone belts is highly variable in both style and intensity of deformation. Common



_HELTS:q_{EIRBfX_EI_R/Y_S,_INGROCKTERRAINS...
J. A. Percival and K. D. Card

171

features include sinuous, bifurcating folds, steep foliation and lineation and internal
shear zones. Deformation may result from several causes, including: I) tectonic
emplacement of the belt (18-21); 2) diapiric rise of external and internal granitoid
bodies (18,22-24); and 3) regional compression and/or transpression (25-27). In Slave

Province stratigraphic onlap relationships between overlying greywacke-shale
sequences and underlying volcanic rocks are common. This contrasts with the Superior
Province, where belts of sedimentary rock, fault-bounded for the most part, alternate
on a 50-150 km scale with ma}or volcanic-plutonic belts.

As well as discrete fault contacts that form many belt boundaries, complex
intercalation of volcanic and plutonic or sedimentary rocks by thrusting has been
recognized in widespread locations (19,24-31). Thrusting at infrastructural levels may
be an important process in high-grade gneissic terrains (32). Transcurrent

displacements of at least several tens of kms have been estimated along some
subprovince boundaries in the Superior Province (27,33,34), leading to the suggestion
that greenstone and sedimentary subprovinces are accreted blocks. (27, 47, 59)

Plutonic Terrains. Plutonic rocks are particularly abundant in Archean volcano-

plutonic terrains where they surround and intrude greenstone belts. Lithologically,
these include variably xenoiithic tonaiite gneiss and more homogeneous bodies ranging
from diorite to granite and syenite. Many syn-to post-kinematic plutons were
emplaced during early magmatic and late diapiric stages spanning time intervals of ca
20 Ma (35). External plutons are generally similar in composition and age to plutons
within belts. Although some plutonic rocks are older than and may represent basement
to supracrustal sequences, contacts are generally intrusive or tectonic; precise zircon
dating in Superior Province has demonstrated that many tonalite-diorite plutons are
coeval with the volcanic hosts (13,36,37). Plutons of granodiorite-granite composition
commonly post-date the youngest volcanic rocks and major tectonism by 5-25 Ma.
Abbott and Hoffman (38)accounted for voluminous Archean tonalitic magmatism by
tapping of low-temperature melts from large volumes of hydrous oceanic lithosphere

consumed in shallow subduction zones. The equally voluminous granodiorite-granite
magmatism may be the result of lower-crustal melting induced by thickening during
collisional or accretionary events. (47).

Plutonic terrains east and west of the Kolar Schist belt have been interpreted as

distinct continental fragments, sutured along the schist belt (39). Collisional processes
between Precambrian blocks have not been substantiated paleomagnetically (40).

Metasedimentary Belts. Large tracts of metasedimentary rock, predominantly

greywacke and shale deposited in turbidite sequences, are distinguished from the iron
formation-chert-carbonate-shale successions commonly associated with greenstone

belts. Metasedimentary belts, commonly metamorphosed to amphibolite facies gneiss
and migmatite, constitute a significant supracrustal component of many Archean
terrains, most notably the Slave and Superior Provinces of Canada.

Turbidites make up some $0% of the supracrustal sequences within the Slave
Province (70). Deposition of sediments of felsic volcanic and plutonic derivation (41),
is thought to be broadly coeval with eruption of marginal volcanic sequences of about
2670 Ma age (I0), possibly in response to regional extension (42). The turbidites have

alternatively been interpreted (20) as trench-fill deposits in a prograding accretionary
complex. Sialic basement of 3 Ga age (_3,44), recognized at several locations, has
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been variably interpreted as continuous pre-greenstone sialic crust or as
microcontinental fragments. Low-pressure regional metamorphism results from the
rise of thermal domes (45), possibly associated with the intrusion of plutons.

Three major linear metasedimentary belts separate granite-greenstone terrains
of the Superior Province (46,47): the English River, Quetico and Pontiac belts.
Although volcanic rocks are rare or absent from the turbiditic sequences, a felsic
volcanic (45) or mixed volcanic and plutonic provenance (49) is inferred. Sedimentary
sequences are generally in fault contact with adjacent terrains and increase in
metamorphic grade from low at the margins to high (migmatite to low-P granulite) in
axial regions, where plutons, particularly peraluminous monzogranites, are abundant.
It is apparent that these belts developed as elongate sedimentary basins collecting
detritus from adjacent volcanic-plutonic highlands and were later subjected to
deformation, axial plutonism and high-level metamorphism.

The oldest detrital zircons in metasedimentary belts are commonly derived from

ancient terrains either not yet recognized, at great distance from sediment deposition,
or destroyed, buried or allochthonous subsequent to the erosional event. Examples
include 4.2 Ga zircons in the 3.5 GaMt. Narryer quartzite (50), 3.1 Ga zircons in the
2.7 Ga Pontiac belt (51)9 and 3.8 Ga zircons in the 3.7 Ga Nulliak quartzite (52).

Relationship Between Low and High-Grade Terrains. High-grade terrains form
large parts of some Archean cratons and have variable relationships to adjacent
greenstone belts. Characterized by upper-amphibolite to granulite-facies
metamorphic grade in mainly intrusive rock types, high-grade terrains have been
interpreted as either lateral equivalents of greenstone belts, in a different tectonic
environment (53,2), or as the deeply-eroded roots to greenstone belts (54).
Geobarometry is a useful tool in distinguishing between alternative interpretations in

specific areas. Recognition of geological and geophysical criteria of crustal cross-
sections (55) may also guide interpretation.

Examples of both lateral and vertical transitions from low to high-grade terrains
are documented in the Superior Province. A lateralrelationship has been inferred for

the high-grade Quetico metasedimentary belt and adjacent low-grade Wabigoon and
Wawa metavolcanic-plutonic belts. Volcanic rocks were deposited 2750-2695 Ma ago
(13,26). Coeval turbiditic metagreywackes of the Quetico belts, about 2744 Ma
old (56) have an axial high-temperature, low pressure zone of schist, migmatite,
S-type granites and local granulite (58-60), suggesting a major thermal anomaly at
high structural levels. Different tectonic settings and evolution are proposed for the
low- grade volcanic (arc) and high-grade metasedimentary (marginal basin) terrains.
Differences in structural style between belts can be attributed to variable levels of
exposure (60) or mechanical character.

Evidence of dextral transpressional deformation characterizes the Wawa-

Quetico-Wabigoon boundary region. This includes: 1) assymetric folds and other
kinematic indicators in the northern Wawa (26), Quetico (60) and southern Wabigoon
(27) belts, and 2) conglomerate and alkaline volcanic deposits associated with strike-

slip faults (27,26). The event is bracketed between 2695 and 2685 Ma by zircon dates
(13).
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Adjacent high and low-grade Archean terrains have been interpreted, by analogy
with the Cenozoic Rochas Verdes complex (2)_ as deeply-eroded arcs and adjacent
back-arc basins respectively.

Vertical relationships between low and high-grade regions have been interpreted
in the intracratonic Kapuskasing uplift (61,62) and marginal Pikwitonei region (63) of
the Superior Province, as well as in the Kaapvaal Craton (64). An uninterrupted
oblique cross-section through the Michipicoten greenstone belt to lower crustal
granulites is exposed across a 120-kin-wide transition in the southern Kapuskasing
uplift. Well-preserved metavolcanic and metasedimentary rocks of the greenstone
belt, metamorphosed to greenschist facies at 2-3 kbar, are intruded and underlain by
some 10-15kin of tonalitic rocks which increase in structural complexity from
homogeneous plutons to contorted gneisses with increasing depth. Lowermost in the
section is a heterogeneous granulite complex, at least 10 km thick, of interlayered
supracrustal (1596) and intrusive (8596) rocks recording metamorphic conditions of 700-
g00°C) 7-g kbar (66). The crustal slab was emplaced onto low-grade rocks of the
Abitibi belt on the Ivanhoe Lake thrust (66) some.2 Ga ago.

In th_ Pil,u,i*,_n,,iregion, _c+i,_.;,,.... b types ;__,..A:__.................................... ,,._,uu,..8 iron formation, pillow

basalt, calc-silicatesand anorthosite can be traced along strike from the low-grade
Sachigo Subprovince into Pikwitonei granulites (63). 5upracrustal rocks step up in

metamorphic grade across faults (67) as intrusive rocks become more abundant.

Metamorphic pressure increases within the granulites from 7 to 12 kbar (6g) toward

the western boundary, the Nelson Front. Both the Kapuskasing and Pikwitonei

structures have diagnostic features of crustal cross-sections including gradients of
metamorphic grade and pressure, high proportions of intrusive rock types and paired

gravity anomalies.
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Large (up to 20 cm), equidimensional, commonly euhedral, plagioclase mega-

crysts of highly calcic composition (AnRn Qn) occur commonly in all Archean
cratons in one or more of three distinct _{s6_iations:

I) as cumulate crystal segregations of anorthosite or as megacrysts in basal-

tic dikes, sills, and flows in greenstone belts that vary in metamorphic grade
from greenschist to granulite. Throughout lO0's of thousands of square kilo-

meters of northwestern Ontario and Manitoba the plagioclase megacrysts occur

in pillowed and massive flows, sills, dikes, large inclusions in dikes, an_
intrusive anorthositic complexes (Fig. 1) with areas of up to a few 100 km
and spanning a period of at least 100 m.y. in the 2.7 to 2.8 b.y. time frame,

2) as basaltic dike swarms in stable cratonic areas forming parallel to sub-

parallel patterns over hundreds of thousands of square kilometers intruding
both granitic gneisses and supracrustai belts including greenstones. These

swarms include the Ameralik-Saglek system at 3.1 to 3.4 b.y. (Fig. 2) [1], the

Matachewan system at 2.5 to 2.6 b.y. [2], and the Beartooth-Bighorn system at

2.2 to 2.3 b.y. [3], and

3) as anorthositic complexes associated with marbles and quartzites (Sittam-

pundi, India and Messina, South Africa) in granulite grade terrains.

Initial attempts to correlate tectonic settings of similar modern cryst-
bearing units with their Archean counterparts were only partially successful.

Plagioclase phenocrysts of AnRn qn occur in basaltic volcanic flows in oceanic
crust at spreading ridges, ho°tUs-p_oUts,aseismic ridges, and fracture zones [4].

These recent occurrences, however, normally involve only small phenocrysts up

to a few millimeters in size and usually more lathy than equidimensional in

shape [5]. In contrast to these normal occurrences, volcanic flows over the

Galapagos hotspot display more equidimensional crysts up to 3 cm across [4].

Although these oceanic environments might be satisfactory tectonic analogs for

many greenstone occurrences, they certainly are not satisfactory for the exten-
sive dike swarms in stable cratonic masses. Thus we turn for clues to a more

detailed understanding of the petrogenesis of the crysts and related melts.

The crysts are quite homogeneous, varying by little more than one to two
An units over several centimeters thereby suggesting nearly isothermal crystal-

lization at nearly constant melt composition over the time required to grow

crystals commonly 6 to 8 cm across and up to 20 cm across and accumulate them
in large masses. Thin, more sodic rims on the order of 100 to 200 _Lm wide are

common on large crysts when the groundmass plagioclase laths are more sodic

than the large crysts. The rims normally approach the composition of the

plagioclase in the groundmass (Table 1).

The nature of the parent melts, or melts in equilibrium with the large

crysts, has been an open question because: 1) the anorthositic complexes are

clearly cumulates with bulk compositions too rich in Al2_ and CaO to repre-
sent melts [6], and 2) the disparity in composition betw-ee-nplagioclase crysts

and plagioclase of the matrix suggests a lack of equilibrium between crysts

and the melt represented by their matrix.

Initial attempts to determine melt compositions by use of REE concentra-
tions in megacrysts in conjunction with distribution coefficients for plagio-

clase and basaltic melts were fraught with problems resulting from modifica-

tion of plagioclase REE concentrations by alteration, recrystallization, and

tiny inclusions. By utilizing several splits from each cryst in several

samples from the BVL anorthosite, mixing lines were determined and the least
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modified REE concentrations were calculated for pristine plagioclases [7].

These values in conjunction with the most recent distribution coefficients

indicate melts with nearly flat REE patterns at IOX to 20X chondrites with

perhaps a slight depletion in the light REE's. The calculated patterns com-
pare well with several cryst-bearing basalts in greenstone belts (Fig. 3) as

well as with the non-cryst-bearing basaltso These patterns are those of the
least enriched tholeiitic basalts which are very common in greenstone belts.

Comparison of these basalts with those in the cratonic dike swarms shows many
similarities (Fig. 3, Table 2) but the initial data suggests that the cratonic

dikes are slightly enriched in SiOp, K.O, and light REE. It is tempting to
attribute these differences to cont_{mina4cion of the melts as they rise through

continental crust but the melts of the Galapagos when compared with MORB show

some of the same enrichments (Table 2) which in this case cannot be attributed

to continental contaminants. Further work on the pristine REE contents of

plagioclase megacrysts is underway and should help determine whether mega-

crysts in enriched melts formed from the more enriched or less enriched tholei-

itic melts, or both.

At present the petrogenetic data require, at a minimum, isothermal crys-

tallization of plagioclase megacrysts from tholeiitic melts (the least en-

riched ones in greenstone belts) followed by segregation of the plagioclase

crystals which then become entrained in rising melts to form intrusions or
volcanic flows. Furthermore, the occurrences seem to require large volumes of

melt at similar temperatures for long periods of time over huge areas having
both oceanic and cratonic associations. Continual generation of similar melt

and continuous addition of the melt to extensive networks of crystallizing

chambers is also strongly implied. The major remaining questions with signifi-

cant implications for the setting and evolution of greenstone belts are: 1)

Does the cryst-producing melt have the same composition and crystallize under
the same conditions beneath greenstone belts, stable cratons, and current

oceanic crust? 2) Where do the plagioclase crysts form and accumulate; in low

or high pressure environments? 3) Is there a systematic change in the time of

megacryst emplacement across large areas such as might be produced by plates

overriding zones of melt production or other such time-dependent mechanisms?
Refs: [1] McGregor _/. R. e¢ al. (1985) Workshop: The Wortds Oldest Rocks, Lunar and Planetary

Inst., Houston. [2] Ernst R. E. (1982) Ont. Geol. Surv. Mtsc. Pap. 106, p. 53-56. [3] Mtller J. D.
(1980-81) Wyo. Geo|. Assoc. Earth Scl. Bull., v. 13-14, p. 187-215. [4]Cullen A. et el. (1985)

prepr|nt from Center for Volc. Univ. Oreg. (5] Blanchard D. P. et el. (1976) Jour. Geophys. Re5.,

81, p. 4231-4246 and Donaldson C. (1977) EPSL, 37, p. 81-89, [6] Phtnney W. C. (1982) LPI Tech,
Rpt. 82-01, Lunar and Planetary Inst., Houston, p. 121-124. Ill Morntson D. A. et el. (1985) Lunar

and Planet. 5ct. Conf. XVI, Lunar and Planetary Inst.. Houston, p. 589-590.
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WABIGOON SUBPROVINCE

--_U_i_/ _, ;l_. "_ . . . Y,', "/ "/. ,J_,,'_-

R|N_ I__'- SEINE 0 15 Km

_QUETICO SUBPROVINCE I I

Fig. li- Schematic diagram

illustrating strOctural

features of Rainy Lake
Wrench Zone. Short solid

arrows identify downward

facing units.

The Superior Province of the Canadian Shield comprises an alternation of

su_?rovinces with contrasting lithological, structural and metamorphic

styles (1). Rocks of the Rainy Lake area form a fault bounded wedge between

two of these subprovinces, the Wabigoon granite-greenstone terrain to the

north and the Quetico metasedimentary terrain to the south (Fig. l). The

Ouetico and Seine River-Rainy Lake Faults bound this wedge within which inter-

pretation of the stratigraphy has been historically contentious. In the
eastern part of the wedge, volcanic rocks and coeval tonalitic sills are uncon-

formably overlain by fluviatile conglomerate and arenite of the'Seine Group;

in the western part of the wedge, metamorphosed wacke and mudstone of the

Coutchiching Group are cut by granodioritic plutons. The Coutchiching Group
has previously been correlated with the Seine Group and with the turbiditic

Quetico metasediments of the Quetico Subprovince and these correlations are

the cornerstone of earlier tectonic models which relate the subprovinces (2,3).

The structural geology of the Rainy Lake area is characterized by the
following attributes:

(i) lenticular lithostratigraphic domains with discordant boundaries,
(ii) steep boundary faults,

(iii) regular orientation and sense of displacement of small ductile shear

zones,

(iv) regionally developed sub-vertical foliation which transects large litho-
logical folds,

(v) shallow bimodal orientations of minor folds and lineations and a prepon-

derance of folds of dextral asymmetry,

(vi) downward facing folds in the Rice Bay, Nickel Lake and Bear Pass areas
(arrowed, Fig. l).

These observations compare favourably with the known characteristics of dextral

wrench or "transpressive" zones based both on experimental data and natural

examples (4,5,6,7,8). Much of this deformation involved the Seine Group, the

youngest stratigraphic unit in the area (9), and predates the emplacement of

late-to-post-tectonic granodioritic plutons for which radiometric data indicate
a Late Archean age.

The interpretation of a wrench zone separating the Wabigoon and Quetico
Subprovinces has important implications regarding the tectonic models which can
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be used to relate them. Of great importance is the high probability that this
zone contains rocks which are actually allochthonous relative to those adjacent
in the Quetico and Wabigoon. Given this type of structural environment, not
only is correlation of stratigraphic units between individual lenticular
domains difficult to establish simply on the basis of some lithological simi-
larity but more important, the correlation with units exterior to the wrench
zone is even more suspect. Newgeoch_onologic_l data (9) which demonstrates a
40 Ma difference in age between the Seine and Coutchiching strongly supports
this argument. Therefore the concept that Seine-type alluvial-fluvial rocks,
which are restricted spatially to the wrench zone are transitial "facies"
between Wabigoon volcanics and Quetico turbidites (2,3) finds little support
in a wrench zone interpretation.

Pettijohn (I0) was the first to emphasize that Seine-type sedimentary
sequences occur all along the subprovince margin. Because these rocks also
correlate spatially with a well defined wrench zone it is instructive to in-
quire whether an alternate hypothesis might account for these observed rela-
tionships without relying on the concept of facies equivalence. The link
between alluvial-fluvial sedimentation and wrench zones is well-known in
Cenozoic environments where thick alluvial, fluvial and lacustrine sequences
are restricted to narrow "pul!-epart" basins associated with large transcurrent
faults (11,12,13). Such basins are localized by bends in marginal faults and
by intersections with fault splays. Lateral and vertical facies variations
are present within such basins (14) but these rocks are not contiguous with
rocks external to the basin. The size and geometry of the wrench fault system
at the southern margin of Wabigoon subprovince and the areal extent of the
Seine-type rocks are comparable with younger examples in which there is also
a juxtaposition of rocks of differing lithology. In many of these examples,
and possibly in the present one as well, the juxtaposed terranes have deposi-
tional histories which are quite independent so that present geographic geome-
try has no simple paleographic significance.

The proposal that wrench faulting is significant at the subprovince
boundary is not a new one. Hawley (15) first suggested a model of this type
for rocks in the Atikokan area to the east of Rainy Lake but the emphasis in
the past has been placed only on the late-stage displacements on the Quetico
Fault (2,16) rather than the possibility presented here that such late faulti_kg
is merely a reflection of a broader zone of wrenching which also became a locus
for sedimentation.
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A PALAEOMAGNETIC PERSPECTIVE OF PRECAMBRIAN TECTONIC STYLES

P.W. Schmldt and B.J.J. Embleton, CSIRO Division of Mineral Physics and

Mineralogy, P.O. Box 136, North Ryde NSW Australia

The considerable success derived from palaeomagnetic studies of

Phanerozoic rocks with respect to the tectonic styles of continental drift (1)

and plate tectonics (2), etc. have not been repeated by the many

palaeomagnetic studies of Precambrian rocks. This is undoubtedly related to
the vast amount of Precambrian time compared with Phanerozoic time, and the

concomitant uncertainties of magnetisation ages and rock ages, yet it is still

surprising that there is little evidence of consolidation or even convergence

of opinions regarding tectonic styles prevalent during the Precambrian. After

all, there are 30 years of research with results covering the major continents

for Precambrian times that overlap considerably yet there is no concensus even

in the grossest terms. There is good evidence that the usual assumptions

employed by palaeomagnetlsm are valid for the Precambrian which only serves to

exacerbate the problem. The existence of magnetic reversals during the

Precambrian, for instance, is difficult to explain except in terms of a

geomagnetic field that was predomlnantlydlpolar in nature. It is a small

concession to extend this notion of the Precsmbrlan geomagnetic field to

include its alignment with the Earth's spin axis and the other virtues of an

axial geocentric dipole that characterise the recent geomagnetic field. In

addition it is not a forceful argument to claim that early studies of

Precambrlan rocks need to be re-done, since re-studles have often only served

to confirm the early works. Therefore we submit that the palaeomagnetlc

results derived from Precambrlan rock units are not easily dismissed. It is

simply untenable that the majority of the data are spurious and claims that

synopses of Precambrlan data are invalid, cannot be sustained in such terms.

Such arguements posed against the evidence for continental drift have long

been debunked. There are, nevertheless, differing interpretations of

Precambrlan palaeomagnetlc data and it is the purpose of this brief article to

address this problem.

Methods that have been used to interpret Precambrlan palaeomagnetic data

fall into two classes. The first class assumes the existence of a "Pangaea"

or some supercontlnent and proceeds to use the palaeomagnetlc data, a

posteriorl, to support the model. The second class, which we prefer, accepts

the palaeomagnetic data at face value (as synthesised by workers closely in

touch with the results) and proceeds to view the overall relationships of the

data, isolated from preconceived notions. This latter approach has led us to

suggest that the present day geographical relationships of continents (from
which a reasonable amount of data for the Precsmbrian are available) yields

the more satisfactory comparison. Of course small adjustments of the

continents refine this comparison, but overall an excellent agreement in

Precambriau pole paths can be realised by leaving the continents in their

present locations.

Limitations of the available data In our earlier comparisons (3)

restricted the time span of comparisons between different continents to 2300

Ma - 1900 Ma for North America and Africa and 1800 Ma - 1600 Ma for North

America, Greenland and Australia. Recently two results have been derived from

igeneous rock about 2900 Ma in age, in Australia and Africa. The

palaeomagnetlc pole positions from these rock units are in close proximity,
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suggesting that the present geographic relationship of Australia and Africa is

valid for 2900 Ma ago. The pole position from the Mllllndlnna Complex,
Australia, dated at 2860_20 Ma Is at 11.9°S, 161.3°E, dp=6.8 °, dm-8.4°(4),

while the pole position from the Usushwana Complex, Africa, dated at 2880 Ms

is at 11.6°S, 165.8 ° , dp=5.1 °, dm=7.5°(5). Thus there Is evidence that during

the Precambrlan North America and Australia were in their present relative
geographic locations for 1800 Ma-1600 Ma, as were North America and Africa for

2300 Ma-1900 Ma, and now Africa and Australia, at least for 2900 Ma ago.

These observations are not easily reconciled with Phanerozolc

palaeomagnetlc results as we have already dlscussed(3), but they are a matter

of record and must be explicable. In terms of greenstone terranes It is

obvious that tectonic models postulated to explain these observations are
paramount in understanding Precambrlan geology. What relevance the current

geographical relationships of continents have with their Precambrlan

relationships remains a paradox, but It would seem that the enslallc model for

the development of greenstone terranes Is favoured by the Precambrlan

palaeomagnetlc data.

(1)

(2)

(3)
(4)

(5)

Irving, E., 1964. Paleomagnetlsm and its application to geological and

geophyslcal problems. Wlley, N.Y., pp. 399.
_cElhinny, M.W., 1973. Palaeomagnetlsm and plate tectonics. Cambridge

University Press, Cambridge, pp. 358.
Embleton, B.J.J. and Schmldt, P.W., 1979. Nature 282, 705-707.

Schmldt, P.W. and Embleton, B.J.J., 1985. J. Geophy. Res., _ 2967-
2984.
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THE WISCONSIN MAGMATIC TERRANE: AN EARLY PROTEROZOIC GREENSTONE-

GRANITE TERRANE FORMED BY PLATE TECTONIC PROCESSES; Klaus J. Schulz, U.S.

Geological Survey, Reston, VA 22092 and Gene L. LaBerge, Department of
Geology, University of Wisconsin-Oshkosh, Oshkosh, WS 54901 and U.S.

Geological Survey

The Wisconsin magmatic terrane (WMT) is an east trending belt of

dominantly volcanic-plutonic complexes of Early Proterozoic age-(_lBSO m.y.)

that lies to the south of the Archean rocks and Early Proterozoic epicratonic

sequence (Marquette Range Supergroup) in Michigan. It is separated from the

epicratonic Marquette Range Supergroup by the high-angle Niagara fault, is

bounded on the south, in central Wisconsin, by Archean gneisses, is truncated

on the west by rocks of the Midcontinent rift system, and is intruded on the

east by the post-orogenic Wolf River batholith.

Although the history of the WMT is complex in detail, integration of

recent studies (Sims and others, in press) provides an overview of its nature

and evolution. The WMT shows many similarities to Archean greenstone-granite

(AGG) terranes (Condie, 1981). In fact, until recent U/Pb zircon dating,

considerable controversy existed as to the age of the rocks of the WMT.

Insofar as the comparisons between the WMT and AGG terranes are valid, under-

standing of the tectonics of the WMT may provide important insights into the

tectonic processes involved in the evolution of at least some AGG terranes.

As in many AGG terranes, a major portion of the WMT is comprised of

volcanic rocks and lesser volcanogenic sediments variably metamorphosed to

lower greenschist to amphibolite facies. The supracrustal rocks show a

complex stratigraphy with at least three successions distinguished on the

basis of differences in composition, metamorphism, and structural fabric

(LaBerge and Myers, 1984; Sims and others, in press). The older units are

dominantly subaqueous basaltic lavas and consanguineous intrusive rocks
which are overlain locally by intermediate to felsic volcanic and volcani-

clastic units, some in part subaerial (LaBerge and Myers, 1984). Both bimodal

(basalt-rhyolii_e) and calc-alkaline (basaltic andesite through rhyolite)

suites are present with the former hosting volcanogenic massive sulfide

deposits (May and Schmidt, 1982). Komatiites have not been recognized within

the WMT. The older basaltic units are dominantly tholeiitic in character,

show strong to moderate depletion of light REE elements ([La/Yb]N=O.09-O.89)

and high-field-strength elements (Hf, Zr, Ta, etc.), and are lithologically

and compositionally similar to recent back-arc basin basalts (e.g. Mariana

Trough, Wood and others, 1981), island-arc tholeiites (e.g. Scotia arc,

Hawkesworth and others, 1977), and some ophiolitic basalts (e.g. Troodos,

Kay and Senechal, 1976). The younger calc-alkaline units are enriched in

LIL elements ([La/Yb]N=2.5-9.5), are also depleted in high-field-strength
elements, and are similar to volcanic sequences found in recent island-arcs

(e.g. Sunda Arc, Whitford and others, 1979).

Sedimentary rocks are locally found to overlie and(or) interfinger with

the volcanic succession. They include graywacke, argillite, thin iron-

formation, chert, and minor conglomerate, some containing granitoid boulders
•(LaBerge and Myers, 1984).
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Intrusive rocks within the WMTappear to have been largely diapirically
emplacedand show a temporal progression from gabbro and diorite through
tonalite and granite. They range from calcic to calc-alkaline in character,
although locally slightly alkaline varieties are also present (Sims and
others, 1985). The granitoids showan overall increase from north to south
across the terrane in their average K20/Na20ratios and SiO2 contents.
Gneissic rocks, found in domesand block uplifts, are mostly tonalite to
granodiroite and are also calc-alkaline (Sims and others, 1985). Both
lithologically and chemically, the WMTgranitoids appear similar to those
formed at compressional plate-margins (Brown, 1982).

Ultramafic rocks are present in the WMT,particularly along the northern
and southern margins. They are mostly serpentinized, but perioditic and
pyroxenitic lithologies are recognized. These ultramafic rocks are often
spatially associated with gabbroic rocks andwere in somecases structurally
implaced. The ultramafic-gabbroic bodies are lithologically and chemically
similar to recent ophiolitic fragments.

Structure within the WMTis complex and consists regionally of large
structural blocks having diversely oriented internal structures that are

Sims and others in press). Within the blocks, the supracrustal rocks show
generally steep dips and opento isoclinal folds. The deformation zones
bounding the blocks record pronounced flattening in the foliation planes
and a strong componentof verticle movement(Palmer, 1980). This intense
deformation along zones is regional in scope, and generally younger than
the pervailing internal structural fabric within the blocks. Domesalong
the northern margin of the terrane, representing large-scale, antiformal
fold-interference structures, modified by diapirism and by intrusion of
granitoids, have further deformed and metamorphosedthe mantling supracrustal
rocks (Sims and others, 1985).

U-Th-Pbzircon ages on the volcanic and associated gneissic and grani-
toid rocks that comprise the WMT(VanSchmus,1980; Sims and others, in press)
indicate that they formed from 1,890 to 1,830 Ma. Detailed isotopic dating
in the northeastern portion of the WMT(Sims and others, 1985) indicates that
volcanism, granitoid intrusion, metamorphism,and deformation within this
region occurred from 1,865 to 1,835 Ma ago, a time span of 30 m.y.

The overall lithologic, geochemical, metallogenic, metamorphic, and
deformational characteristics of the WMTare similar to those observed in
recent volcanic arc terranes formed at sites of plate convergence. It is
concluded that the WMTrepresents an evolved oceanic island-arc terrane
accreated to the Superior craton in the Early Proterozoic. This conclusion
is strengthened by the apparent absence of Archean basement from most of the
WMT,and the recent recognition of the passive margin character of the
epicratonic Marquette RangeSupergroup (Larue and Sloss, 1980). On the basis
of the newdata for the WMTand the epicratonic sequence in Michigan, Schulz
and others (in press) have proposed the following tectonic model: 1) early
crustal rifting and spreading along the southern margin of the Superior
craton, 2) subsequent subduction and formation of a complex volcanic arc,
and, 3) with oblique convergence, collision of the arc with the continental
margin (epicratonic) sequence and Archean crust of upper Michigan culminating
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in the Penokeanorogeny. This tectonic model is similar to plate tectonic
histories recently presented for other Early Proterozoic terranes of North
America (Hoffman, 1980; Lewry, 1981; Karlstrom and others, 1983). This
indicates that the events and processes occurring in the Lake Superior region
were not unique, and that the tectonic processes operating were generally
similar to those recognized for the Phanerozoic. Given the general similarity
of someAGGterranes to the Early Proterozoic magmatic terranes, it seems
likely that subduction and plate collisions were also operative in the Archean.
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NEW INSIGHTS INTO TYPICAL ARCHEAN STRUCTURES IN GREENSTONE TERRANES

OF WESTERN ONTARIO: W.M. Schwerdtner, Department of Geology, University of
Toronto, Toronto, Canada M5S 1A1

Ongoing detailed field work in selected granitoid complexes of the

western Wabigoon and Wawa Subprovinces, southern Canadian Shield, has led to

several new conclusions: (1) Prominent gneiss domes are composed of

prestrained tonalite-granodiorite and represent dense hoods of magmatic

granitoid diapirs. The diapiric material commonly was a syenite-diorite

crystal mush. (2) The deformation history of the prestrained gneiss remains
to be unraveled. (3) The gneiss lacked a thick cover of mafic metavolcanics

or other dense rocks at the time of magmatic diaprisim. (4) The synclinoral

structure of large greenstone belts is older than the late gneiss domes and
may have been initiated by volcano-tectonic processes. Multi-phase granitoid

plutonism greatly tightened the synclinoria. (5) Small greenstone masses

within the gneiss are complexly deformed, together with the gneiss. (6) No

compelling evidence has been found of ductile early thrusting in the gneiss
terranes. Zones of greenstone enclaves occure in hornblende-rich

contaminated tonalite and are apt to be deformed magmatic septa. Elsewhere,
the tonalite gneiss is biotite-rich and hornblende-poor{FIGl).

These conclusions rest on several new pieces of structural evidence.

(1) Oval plutons of syenite-diorite have magmatic strain fabrics and sharp

contacts that are parallel to an axial-plane foliation in the surrounding

refolded gneiss. (2) Gneiss domes are lithologically composite and contain

large sheath-like structures which are deformed early plutons, distorted

earlier gneiss domes, or early ductile nappes produced by folding of planar
plutonic septa. (3) The predomal attitudes of gneissosity varied from point

to point. It is difficult to prove by conventional structural methods what

caused the state of early deformation in the large gneiss domes. New

approaches are being developed based on the patterns of total and incremental

finite strain in the granitoid terranes under study.
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DEFORMATIONAL SEQUENCE OF A PORTION OF THE MICHIPICOTEN

GREENSTONE BELT, CHABANEL TOWNSHIP, ONTARIO; Catherine H. Shrady and

George E. McGill, Dept. of Geology and Geography, University of

Massachusetts, Amherst, IdA 01003
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Detailed mapping at a scale of one inch = 400 feet is being carried

out within a fume kill, having excellent exposure, located in the south-

western portion of the Michipicoten Greenstone Belt near Wawa, Ontario.

A simplified geological map of the area described here is presented

in a companion abstract (Fig. 1 in i).

The rocks are metasediments and metavolcanics of lower greenschist

facies. U-Pb geochronology indicates that they are at least 2698 ± Ii Ha

old (2). The "lithologic packages" (I) strike northeast to northwest,

but the dominant strike is approximately east-west. Sedimentary struc-

tures and graded bedding are well preserved, aiding in the structural

interpretation of this multiply deformed area.

Deformation in this area is tentatively divided into six phases

(0-5). Phase 0 is soft sediment deformation. Folds of this type are

generally small (amplitudes ranging from several millimeters to tens of

centimeters); however, some early larger scale (up to I0 meters in

amplitude) tight to isoclinal folds with no or a very poorly developed

axial plane cleavage may be slump folds.

Included within Phase 1 of deformation is the regional overturning

resulting in rocks that dip north and young to the south in the northern

part of our area and extending well to the north (1,3,4), and rocks

that dip south and young north in the southern part of our area and

farther south (l,3a). To what extent the regional steep dips are attrib-

utable to this phase of deformation or to later refolding is, at present,

not known. Also included within Phase I are an approximately bedding

parallel cleavage, and pebbles within conglomeratic units flattened

parallel to this cleavage. It is thought that these latter two features

are associated and likely relate to the regional overturning.

Cut by and therefore pre-dating Phase 2 cleavage, but of uncertain

temporal relationship to the structures included within Phase I, are

areally significant faults that separate lithologic packages. These

faults regionally follow but locally truncate bedding. In places,

they are associated with an apparently old fracture cleavage.

Phase 2 is characterized by a penetrative northwest to north strik-

ing cleavage of moderate dip. Phase 2 cleavage crenulates Phase i

cleavage where both are clearly present; however, in much of the area,

these two cleavages cannot be separated. Related examples of mesoscopic

folds are rare, and associated structures of regional significance

have not been recognized.
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Phase 3 cleavage is penetrative where well developed and crenulates
both Phase i and Phase 2 cleavages. Within the area mapped, Phase 3
cleavage strikes northeast with generally steep northwest or southeast
dips; dip direction and angle commonlychange within individual outcrops.
Dips as low as 30° are locally present in the northwest part of the area.
It is not clear whether variation in dip indicates the existence of
two distinct northeast striking cleavages or whether it is due to later
minor folding about sub-horizontal axial surfaces. Phase 3 cleavage
is axial planar to folds that are open to tight, range in scale from
several millimeters to tens of meters in amplitude, and refold earlier
folds. At one locality, Phase 3 cleavage and associated folds appear
related to late movementon a fault that approximately parallels bedding.
It is not yet clear if this fault is entirely young, or whether it
is a reactivated older structure.

Steeply dipping northeast and north-northwest trending faults
constitute Phase 4. However, somemovementon these faults post-dates
diabase dikes (Phase 5) that trend north-northwest and northeast.
Locally developed fracture cleavages appear to be associated with diabase
dike emplacement,but because the dikes commonlyfollow trends of older
faults, someor all of these fracture cleavages maybe related to the
faults rather than to the dikes.

In summary: we have tentatively identified at least six phases of
deformation within a relatively small area of the Michipicoten Greenstone
Belt. These include the following structural features in approximate
order of occurrence: 0) soft-sediment structures; i) regionally over-
turned rocks, flattened pebbles, bedding parallel cleavage, and early,
approximately bedding parallel faults; 2) northwest to north striking
cleavage; 3) northeast striking cleavage and associated folds, and
at least somelate movementon approximately bedding parallel faults;
4) north-northwest and northeast trending faults; and 5) diabase dikes
and associated fracture cleavages. Minor displacement of the diabase
dikes occurs on faults that appear to be reactivated older structures.
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A CONTINENTAL RIFT HODEL FOR THE LA 6RANDE 6REENSTONE BELT;
T.Skulski (1), A.Hynes (1), H.Liu (2), D.Francis (1), B.Rivard (1),
K.Stamatelopoulou-Seymour (3).(1) Department of Geological Sciences, HcGill
University, Montreal, Canada_ (2) Department of 6eosciences, University of
Arizona, Tucson, Arizona, (3) Department of Geologyt Concordia University,
Hontreal, Canada.

Stratigraphic relationships and the geochemistry of volcanic rocks
constrain the nature and tieing of the tectonic and aagaatic processes in the

pre-deformational history of the La 6rande greenstone belt in the Superior
Province of north-central Quebec (Fig. 1). With the exception of a locality

in the western part of the belt the lowermost supracrustals in this belt are

obscured by syntectonic granitoid intrusives. The supracrustal succession in

the western part of the belt consists of a lower sequence of immature clastic
sediments and marie volcanoclastics, overlain by pillowed and massive basalts

(Fig. I, A-A'). Further east, along tectonic strike, a lower sequence of
mafic volcanoclastics and immature elastic sediments is overlain by a thick

sequence of pillowed and massive basalts, and resedimented coarse elastic

sediments and banded iron formation. These are overlain by massive basaltic

andesites, andesites and intermediate volcanoclastics intercalated with

immature clastic sediments (Fig. I, B-B'). In contrast, in the eastern part
of the belt lenses of felsic volcanics and volcanoclastics occur at the base
of the succession and pillowed and massive basalts are overlain by komatiites

=_'" th=- top Ir_'r:g. i, C-C').

The lower sequences of clastic sediments in the central part of the belt
reflect a mixed intrabasinal and extrabasinal provenance, but the upper
elastic sediments have a uniquely extrabasinal tonalitic provenance. In

addition metasedimentary and granitoid xenoliths have been found in the

volcanic pile in the central and eastern parts of the belt and a local
unconformable contact is believed to exist between the supracrustal

succession and an underlying tonalitic basement in the west (I). Therefore a
model in which the La Grande belt formed on a sialic crust is ÷avoured.

The largest volumes of eruptive rocks in the La Grande belt are
tholeiitic basalts (Fig. 2). These basalts are not primary mantle-derived
liquids, but have undergone a polybaric fractionation history (1_ 2 and 3).

Their parental magmas are

<¢_'_ J_ believed to have been
basaltic komatiites (Fig.

_-- I-a .; ; a r K\\_ _ N I and most magnesian basalts

Al-$i space (Fig. 21 which

is best explained by the
_ _ _ _ ¢> _" ! fractional crystallization

_ _ _1"_ i.e_j_o..;,,, ...... I of orthopyroxene and

_- _ ,%_ m--.-o., _m,_o.,o..,,°. , olivine (4, 1). Co-

_ [.. I /_vo _c,.oc_'''c" / existence of these two
_ _ _ J_' _1 L_,,.o.,o._ | silicate phases and a

"_,,t,¢ / _e_ / o 2okra ] liquid of basaltic,t, co._o_.._ composition is restricted

Figure I Geology of the La 6rande greenstone belt.
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Figure 2 AI-Si and Mg-Fe in cation%. The
solid line encloses basalts from section

A-_, dotted line is basalts from section

B-g, dash-bar and dash-dot are komatiites

and basalts respectively from section C-C
and the dashed line includes komatiites

and basalts from Lac Guyer (north of C-CL

to pressures on the order of 10 kb
(5). Thus the basalts represent
komatiitic liquids which have been
modified by differing extents of
fractionation at depths on the
order of 30 km before migrating to
higher levels in the crust (3, 1
and b). A spectrum of basaltic
compositions are found in the La
Grande belt of which the
endmembers are an Fe-enriched
suite and those which have
negligible Fe variation (Fig. 2).
The Fe-enriched basalts have
undergone extensive low pressure
fractionation of a gabbroic

assemblage, which is probably the

result of a more protracted
residence time in upper crustal
conduit system than the relatively

constant Fe group. The degree of
fractionation of the komatiitic

liquids and their location in

space and time may reflect the

variable efficiency of a crustal

density filter (of. 7). Thus, the
occurrence of komatiitic lavas in

the upper levels of the
supracrustal succession may be due
to late failure of the crustal
barrier. Their restricion to the
eastern parts of the belt may

reflect development of a major

rift only there. Ponding of mafic

magmas within the sialic crust may
have resulted in the melting of

the crust and the early eruption

of rhyolitic magmas in the east (4). Toward the central parts of the belt,
komatiitic eagmas ingested sialic crust, were modified by fractional

crystallization and were ultimately erupted as basaltic andesites and
andesites. These contaminated magmas are characterized by high compatible

element (eg. Ni and Cr) and fractionated, enriched light rare earth element

abundances (up to IOOX chondrite) (8).

The La Brande greenstone belt can be explained as the product of
continental rifting (6). The restricted occurrence of komatiites, and

eastwardly directed paleocurrents in clastic sediments in the central part of

the belt are consistent with rifting commencing in the east and propagating

westward Nith time (Fig. 3). The increase in depth of emplacement and

deposition with time of the lower three units (Fig I, section B-B') in the

central part of the belt reflects deposition in a subsiding basin (6). These

supracrustal rocks are believed to represent the initial rift succession
(c.f. 9). Model calculations (Fig.3) reveal that the extension factor for

lithosphere neccessary to account for the observed initial subsidence in the
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central part of the belt (6) is comparable in magnitude Nith that measured in

Modern sedimentary basins where the continental lithosphere is believed to

have been rapidly thinned (10). The occurrence of elastic sediments of

granitic provenance high in the succession in the central parts of the belt

may reflect the uplift and erosion of marginal forebulges that formed as a
result of lithospheric flexure.

I:: Figure 3 Initial elevation change

versus uniform extension factor. For

..... ;¢ " m" " .- an initial elevation change of .9 km_.5 36k" I corresponding to the subsidence that

<_ pc-2.89gmcm -3 I is observed in the lower three units

_.) r pmL333 gmcm.51 of section B-B'corrected for thebasin fill and I km of water requires

approximately 1.5. The symbols used

<_ are: crustal thickness (to), crustal
_!'____ t and .antle densities (pc) and (p.)

Uj> "_ " . * respectively, emperature at the base-- T 1700 C° t

3 }_ T-1394C; t of the slab (T) and lithosphere
•._ a 1% • • t • • • . • . . _ _1 _hlrltna== I_ Tkm t-ks,-A,.1 .,, .... ;..• ,,,* . I,,i= _ii1;i mIa _eA_IIIIatJB!

" i ¥ § Iz coefficient used is 32 x 16 C The
UNIFORM EXTENSION calculations ,ere performed using the

FACTOR method of Royden and Keen (11).
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TWO CONTRASTING METAMORPHOSED ULTRAMAFIC-MAFIC

COMPLEXES FROM GREENSTONE BELTS, THE NORTHERN KAAPVAAL CRATON,

AND THEIR SIGNIFICANCE IN ARCHAEAN TECTONICS.

C.A. Smit and J.R. Vearncombe, Dept. Geology, Rand Afrikaans

University, P.O. Box 524, Johannesburg 2000, R.S.A.

The character of Archaean ultramafic-mafic complexes can,

given their prominance in greenstone belts, provide critical

clues to help deduce the tectonic setting of these belts. Here we

describe two contrasting, metamorphosed, ultramafic-mafic

complexes, the first a partially serpentinised dunitic body with

associated chromite from Lemoenfontein, one of several

peridotitic bodies occuring as discrete lenses and pods in

granulite facies gneisses of the northern Kaapvaal craton. The

second, the Rooiwater complex is a major layered igneous body,

now metamorphosed in the amphibolite facies, but without

pervasive deformation, which crops out in the northern Murchison

greenstone belt.

The Lemoenfontein body is circular, about 350m in diameter,

having the form of a steeply plunging boudin which complements

the regional structural pattern. The surrounding granulite facies

gneisses were isotopically reset about 2650Ma and may be

considerably older. The Lemoenfontein rocks are partially

serpentinised dunite, displaying a prominent tectonic fabric

defined by the preferred orientation of olivine grains, chromite

pods and disseminated chromite stringers, all of which are

believed to have been through the granulite facies metamorphism.

Chromite is present as massive high-grade ore, 'leopard'

(nodular) ore, tectonically layered ore and disseminated ore.

Zones of chromite enrichment range in thickness from 1 to 30cm.

The Lemoenfontein chromites are similar to those mined in the

Ultramafic Formation of the Selukwe greenstone belt, Zimbabwe.

01ivines from Lemoenfontein are Fo94 to Fo96 with NiO

contents from 0.35 to 0.59wt%. The mineral chemistry of the

chromites of all different types (pods, trains and inclusions in

silicate grains) is very similar indicating either complete

metamorphic equilibration or they represent consistent primary

compositions. The Lemoenfontein chromites have refractory

characteristics (low Ti02, A1203 and alkali metals) and plot on

geochemical fence diagrams in or close to the fields of other

podiform chromites. Rocks which in Phanerozoic series are closely

associated with alpine-type peridotites or ophiolite suites.

The Rooiwater complex is a thick on end differentiated

igneous body, of age greater than 2650Ma, probably intruded at

2960Ma. The complex is heterogenously deformed with much of the

7.5km exposed thickness showing no pervasive deformation.

Metamorphosed pyroxenite, anorthosite, gabbro, sulphide-bearing

gabbros, thick magnetitite layers and differentiated granites are

compatible with the hypothesis that the body is a layered

intrusion although it is now allochthonous and intruded by

younger unrelated granites. Southward increasing Ti02 and

decreasing V205 contents in magnetitite layers combined with a
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general southerly disposition of differentiated hornblende
granite suggest that the Rooiwater complex is southward facing. A
paucity of ultramafic cumulates and up to 1.5km of highly
differentiated hornblende granite suggests that the original
magma was more felsic than that of similar layered intrusions.

The Lemoenfontein chromites and associated ultramafic rocks
are lithologically and chemically similar to their Phanerozoic
equivalents of ophiolitic origin, interpreted as obducted oceanic
crust. Similarly we interpret the Lemoenfontein complex as being
a remnant of Archaean oceanic material. In contrast, the

Rooiwater complex is, despite the lack of exposed intrusive

contacts, similar to layered igneous complexes such as Ushushwana

or Bushveld. These complexes are intrusive in continental

environments. We conclude that contrasting ultramafic-mafic

complexes represent a heterogeneity in greenstone belts with
either oceanic or continental environments involved. Whether this

heterogeneity relates to a temporal or spatial (or both) control
remains uncertain.

Figure i. Geological map of the northern Kaapvaal craton showing
the location of the Lemoenfontein chromites and the Rooiwater

igneous complex.
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ZIRCON Lu-Hf SYSTE_TICS: :iEVIDENCE-:FOR-THEEPISODIC

DEVELOPMENT OF ARCHEAN GREENSTONE BELTS P. E. Smith, M. Tatsumoto* and R. M.

Farquhar, Dept. of Physics, Geophysics Division, University of Toronto, Canada

MSS IA7; U.S. Geological Survey*, Federal Center, _IS 963, P.O. Box 2S046,

Lakewood, CO 80225

A combined U-Th-Pb and Lu-Hf isotopic study of zircons was undertaken

in order to determine the provenance and age of an Archean granite-greenstone

terrain and to test the detailed application of the Lu-Hf system in various

Archean zircons.

The eastern Wawa subprovince of the Superior province consists of the

low grade Michipicoten and Gamitagama greenstone belts and the granitic
terrain. Earlier studies have established the structural and stratigraphic

relationships of the area (1-4). The adjacent high grade Kapuskasing zone

is believed to represent the lower crustal levels to the greenstone belts (S).
The rock units of this area have been the subject of extensive geochron-

ological studies using zircon U-Pb (6, 7) and whole rock U-Th-Pb methods

{Smith, et al in prep.). The three volcanic cycles recognized in the area

have mean ages of 2748 My (cycle I), 2732 My {cycle II), and 2714 My (cycle

III). Syntectonic granitoids which surround the supracrustal rocks date

from the cessation of cycle I volcanic rocks, to the time of post-tectonic

plutonism dated at 2666 + 2 My. The oldest rocks yet dated come from a
granite dated at 2888 + M--y which is possibly the basement to the volcanic

rocks. Zircon ages fro--m the Kapuskasing zone appear to reflect updating

during the regional metamorphism (8).
The Lu, Hf, U and Th contents of zircons from these rocks reveal patterns

that may be indicative of their source regions (Fig. 1). Zircons from rocks

of granitic composition appear to have distinct enrichments in U and Th
relative to zircons from rocks of more intermediate composition. More

striking however, is the severe depletion of Lu and Hf from the zircons from

the Kapuskasing area. The lowest Hf content measured so far, 1790 ppm, is

from zircons from a mafic gneiss. The elemental patterns in the lower

crustal zircons suggest that Lu and Hf loss "accompanies Pb loss during high

grade metamorphism.

The U-Pb age corrected Hf isotopic ratios from the zircons indicate

significant long-lived heterogeneity of source regions for the greenstone

belts (Fig. 2). Overall the heterogeneity in the ratios may be attributed to

three isotopically distinct sources: (i) a high Lu/Hf source; (2) a moder-

ately enriched Lu/Hf source; and (3) a sub-chondritic Lu/Hf source.

The high Lu/Hf source is represented by a sub-volcanic intrusive from

cycle II and two tholeiites (whole rock determinations) from the lower

stratigraphic levels of cycles I and II. The epsilon Hf values range from

+8.7 to +11.6 and the source is believed to represent the depleted mantle.

The second source has epsilon Hf values ranging from +1.4 to +5.9.

There is an apparent alignment of dacitic volcanic rocks and their sub-

volcanic equivalents from cycles I and II with the tonalitic syntectonic

granitoids. It is believed that the source of these rocks was the lower
crust and it can be inferred that previous intracrustal differentiation led

to a high Lu/Hf lower crustal reservoir. The process which led to the
enhanced Lu/Hf ratio was most likeiy Hf Ioss as attested to by the Kapuska-

sing zircons. A greater than chondritic Lu/Hf ratio for the lower crust may

explain the apparent non-coherence of initial Nd and initial Hf ratios for

an Archean tonalite reported in the literature (9, 10).
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The low Lu/Hf source is represented by rhyolites capping the sequences

of cycles I and III and by post-tectonic potassic granitoids. Their epsilon

Hf values ranging from -i.3 to +1.4, significantly lower than the coeval

dacites, are indicative of an upper crustal source.

The Hf isotopic data from the three volcanic cycles indicate that the

typical lithological features of a greenstone belt cycle could be accommodated

in a crustal growth model that involved decreasing depth of melting in three

isotopically distinct reservoirs: mantle, lower crust and upper crust. The

model age of the sources given by the intersection of the lower crustal curve

with the bulk earth evolution curve (ii) is about 2900 My, in good agreement

with the zircon U-Ph basement age. This linear array also has a similar inter-

section age to that of Proterozoic carbonatite complexes studied by Bell et

al (12). The general convergence of the other reservoir vectors around this

age suggests that mantle depletion, crustal extraction and intracrustal

differentiation were all part of the same episodic event. It is also apparent

that recycling of older basement was important in the formation of many of

the later greenstone belt rocks.

Hf/lO0
/k

U

Lux3

Th

Hf/lO0

Th

Figure 1

Relative abundances of Lu, Hf, U and Th for eastern Wawa subprovince zircons.

Symbols are: _ Dacitic volcanic rocks; V rhyolites; 0 sub-volcanic

granitoids; <> syntectonic granitoids; O post-tectonic granitoids; O bas_- _

ment granite zircons; Q Kapuskasing zircons; O conglomerate boulder zircons.
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Initial 176Hf/177Hf vs T diagram for zircons and whole rocks ( D ).

as in Figure i.
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The Earl9 Precambrian sequence in Karnatakaa South India provides evidences

for a distinct trend of evolution which differs from trends exhibited in

many other Early Precambrian regions of the world. The supracrustal rock

associations preserved in greenstone belts and as inclusions in gneisses

and granulites suggest the evolution of the terrain from a stable to a mobile

regime. The stable regime is represented by 1. layered ultramafic-mafic

complexes, 2. orthoquartzite-basalt-rhyodacite-iron formation, and 3. ortho-

quartzite-carbonate-Mn-Fe formation. The mobile regime which can be shown on

sedimento[ogical grounds to have succeeded the stable regime witnessed accumula-

tion of a greywacke-pillow basalt-dacite-rhyolite-iron formation association.

Detrital sediments of the stable zone accumulated dominantly in fluvial environ-

ment and the associated volcanics are subaerial. The voicanics of the stable

regime are tholeiites derived, from a zirconium and LREE-enriched source.

The greywackes of the mobile regime are turbidites, and the volcanic rocks

LREE-depleted to slightly LREE-enriched pattern. The evolution from a stable

to a mobile regime is in contrast to the trend seen in most other regions

of the world, where an early dominantly volcanic association of a mobile

regime gives way upward in the sequence to sediments characteristic of a

stable regime.

Structures in greenstone belts, in the gneisses surrounding them, and

also in the inclusions in the gneisses are similar in style, sequence, and

orientation. This structural unity which is present in spfte of the three

thermal peaks recorded by radiometric ages around 3300, 3000 and 2600 m.y. ago,

indicates long range stability of tectonic stress regimes in the Archaean

lithosphere. The continuation of structures and rock formations across the

• #

greenstone-granullte boundary suggests that the two provinces did not evolve

in separate tectonic blocks but -represent only different crustal levels.
/

The preservation of detrital pyrite-uraninite bearing conglomerates,

iron formations, and carbonate rocks provide an unique opportunity for the

elucidation of evolutionary changes from oxygen-deficient to oxygenic atmosphere-

hydrosphere conditions. Large scale development of iron formations and lime-

stones in the greenstone belts of South India at least 3000 m.y. ago suggests

that these may be the earliest large-scale sinks for _he photosynthetically

produced oxygen. "Detailed palaeobiological and biogeochemical studies of

these rock formations are necessary.
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The Cape Smith Belt is a 3g0x60 km tectonic klippe (I and references therein)
composed of greenschist- to amphibolite-grade mafic and komatiitic lava flows and
fine-grained cluartzose sediment, intruded by minor syn- to post-tectonic
granitoids. Previously studied transects in areas of relatively high structural level
show that the belt is constructed of seven or more north-dipping thrust sheets
which verge toward the Superior Province (Archean) foreland in the south and away
from an Archean basement massif (Kovik Antiform) external to the Trans-Hudson
Orogen (Early Proterozoic) in the north. A field project (mapping and structural-
stratigraphic-metamorphic studies) directed by MRS was begun in 1985 aimed at
the structurally deeper levels of the belt and underlying basement, which are
superbly exposed in oblique cross-section (12 km minimum structural relief) at the
west-plunging eastern end of the belt. Mapping now complete of the eastern end of
the belt confirms that all of the metavolcanic and most of the metasedimentary
rocks are allochthonous with respect to the Archean basement) and that the thrusts
must have been rooted north of Kovik Antiform. The main findings (2) are:

I. A thin autochthonous to parautochthonous low-strain sedimentary sequence on
the south margin of the belt rests directly on Archean basement showing no
evidence of Proterozoic transposition.

2. The bulk of the belt is separated from the autochthon by a sole thrust which,
except at the south margin of the belt, is located at the basement-cover contact.
The hangingwall and footwall rocks of the sole thrust record high ductile strains
over a zone of increasing width, from south to north, toward the hinterland. Late
syn-metamorphic thrusts faults with relatively small displacements cut the sole
thrust and its associated shear zone, and place basement gneisses over cover rocks.

3. Lensoid meta-ultramaYic tectonic blocks occur locally within the basal shear
zone. Their metamorphic anthophyllite-actinolite assemblage differs from the
serpentine-tremolite assemblage of cumulate meta-ultramafics occurring in sills at
higher structural levels. The blocks may have been tectonically transported from
mantle depths during thrusting, although this idea remains to be tested.

_. The allochthonous rocks above the sole thrust occur in a series of thrust sheets

bo_lnded by south-verging (DI) thrust faults, which are defined by structural
repetitions of stratigraphy and splay from the sole thrust. Favorable lithologies at
all structural levels (excepting the southern autochthonous margin) have a
pevetrative syn-metamorphic schistosity (S l) which is planar to south-facing tight
to isoclinal folds of bedding (F1).

5. A transverse stretching lineation (L1) common in the lower stgructural levels
and pervasive in the basal shear zone, when considered with the FI fold asymmetry
and overall thrust-ramp geometry, indicates relative southward translation of the
cover during Dl.
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6. A pelitic interval above the sole thrust on the north margin of the belt contains
the metamorphic assemblage kyanite-staurolite-garnet-biotite-muscovite-
plagioclase-quartz. The asemblage is indicative of metamorphic T of 550°C and
minimum P of 5.5 Kbars.

7. Mesoscopic late- to post-metamorphic chevron to rounded parallel folds (F2) of
the SI fabric have a marked limb asymmetry suggestive of a gravitational origin as
folds cascading off basement-cored macroscopic D2 antiforms into pinched cover-
rock synforms. The distribution of north- versus south-vergent mesoscopic folds
however is not always consistent with the mapped limbs of the macroscopic folds,
possibly reflecting diachronous development of the macroscopic folds.

8. Macroscopic high-angle D3 crossfolds affect both the basement and cover in the
eastern half of the belt and provide a cumulative structural relief of 12-15 kin. D3
fold hinges are readily documented by reversals in plunge azimuth of the D2 folds.
Plunge projections permit the construction of a composite structural cross-section
linking the highest and lowest structural levels of the belt.

The main implication of these observations is that the presence of Archean
basement beneath the belt has no direct bearing on the question of the tectonic
......._o÷+_--_of "_-,,,_mafic-ultramafic magmatism.
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Rhyolitic rocks often are the dominant felsic end member of the bimodal

volcanic suites that characterize many late Archean greenstone belts of the

Canadian Shield [I]. The rhyolites primarily are pyroclastic flows (ash flow

turfs) emplaced following plinian eruptions [2], although deposits formed by

lava flows and phreatomagmatic eruptions also are present. Based both on

measured tectono-stratigraphic sections and provenance studies of greenstone

belt sedimentary sequences [3], the rhyolites are believed to have been equal

in abundance to associated basaltic rocks.

In many recent discussions of the tectonic setting of late Archean

Canadian greenstone belts, rhyolites have been interpreted as products of

intracontinental rifting [2,4]. A study of the teetono-stratigraphic

relationships, rock associations and chemical characteristics of the

particularly well-exposed late Archean rhyolites of the Michipicoten

greenstone belt, Ontario (figure I) suggests that convergent plate margin

models are more appropriate.

Three time-equivalent stratigraphic sequences of volcanism (figure 2),

each including both mafic and felsic rocks, have been recognized in the

Michipicoten greenstone belt [5,6,7,8]. The lower volcanic sequence is most

well-preserved and therefore has been studied in most detail. It consists of

a largely mafic unit (MVI) conformably bverlain by a thick (up to about

700m), mainly felsic volcanic succession (FVI), which was emplaced

approximately 2743 Ma ago [9]. In the Michipicoten Harbour area, an undated

basal felsic flow unit is structurally discontinuous with the mafic sequence.

Along the northern margin of the belt, epiclastic sediments are deposited on

apparently older granitoid basement, and are overlain by felsic volcanics

that may be time-correlative with the Michipicoten(and iron formation)

Harbour felsic flows.
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A range of depositional

environments apparently

existed for the felsic

volcanic rocks of the lower

volcanic sequence. Subaerial

non-welded massive ash flows,

shallow water accretionary

lapilli-bearing hyalotuffs

and deeper water bedded

pyroclastic deposits all have

been recognized [6,7,10].

Similarly, sedimentary rocks

that overlie the lower

volcanic sequence were

deposited in both subaerial

(braided fluvial and alluvial

fan) and subaqueous

(turbidite) environments

[11].
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A

• Voluminous Cenozoic rhyolitic

MAFICFLOWS pyroclastlo deposits are erupted on
107 - _ FELSIC

106- FV3 O _ PYROCLASTIC$ continental (rather than oceanic) crust
.0- _ F_LSICFLOWS and exhibit distinctive chemical

1111 " m IRON FORMATION characteristics and rock associations

J _CONOLOUSRA_ depending on whether that crust was the

GREYWACKE, site of intracontlnental rifting or

-- SHALE,$iLTSTONE subduotlon. Three examples of Cenozoic

w VOLCANIC rhyolltes associated with_ BRECCIA

Q"AN,TO,. intracontlnental, extension-related
teetonism are presented in Table I.

_n,o The Trans-Pecos volcanic province of
: \FV,.2 west Texas represents a rift dominated
_ ,0T_ _,_ 4_ by alkaline to peralkallne rocks of
_'_ --416 " "

:*_ MY, 4,_: U blmodal basalt-rhyolite composition.
.... 414A "

.'-.._-'_161B, The rhyolltes are dominated by
161C 2@, llLA

,42 '_ low-silica (<75wt%) compositions that6,A
,U MV, U tend to be depleted in alumina and lime
151

.... s24,_ relative to iron and the alkalis, The

_ ,u Rio Grande rift of New Mexico consists
of a more continuous spectrum of mafic

i_i_--_ / rlg. 2 _o £eisic compositions that are

_..,._ / commonly described as cal c-alkallne
[14]. Rhyolitic rocks, such as the

Bandolier Tuff, are dominated by high-silica compositions. The Yellowstone

Plateau volcanic field represents a third extension-related rhyolite group

characterized by an association with continental flood basalts and "hot spot"

activity. Yellowstone rhyolltes are composltlonally similar to the

subalkaline rhyolites of the Rio Grande rift.

Cenozoic ash flow turfs of ,.L,,

rhyolitic composition also are ,oL,,:,o.sc,,ozo:c ,,,oL:,:c,.-,Lo._,.

erupted in voluminous ,n..._nn-r.lnt._ _.trnonnt,nestn_ .n...

proportions in continental
Dominant (A1203 * Ca0)/ Aoaoolated

inner arc regions of sic, r--do (..o, • el.1.) .ol,n,,

convergent plate margins. , Trod.,.oo.,@.... T0-,5.,, 0,6 - ,z, b.ns.t.,
Relative to rhyolltes formed .o.l..,•....t,2] -.,.._-.,

trn°bytn

in intracontlnental rifts or
2. Bandolier TuFf, Jones ?_ - 7T 1.21 - 1._5 basolt£@

hot spots, inner arc .o.otn.., ... ,,n.o end.s., to
[ 13,1 _] rbyodaolto

subductlon-related rhyolltes 3.,.no.to. ,.toes 7s - ,, ,.z_- ,_, o_,_n.
tend to have higher ratios of ,clean.,,.ld_,_] thol..t.

alumina and lime to iron and

the alkalis (> about I._) and T'._._

a more continuous spectrum of ,o.,:.0.c,,ozo:c ...o_T:c-.-,_o.T,FfS

lOW-- tO high-silica Subda,...... Intod, oont.ont._ ,..._ ..... ...
compositions. Three examples

of inner arc Cenozoic _o._.nnt (._,o_. c.o)/ "..ool..d
3102 ranln (Fe0 t * alkolLo) volean/@o

rhyolites are listed in Table

2 They differ mainly with , ,.s,n,o_onn.,.... .-N .t, ,57 - ,_1 .,nor_,,b-,l• low Zealand [16] basalt to

respect to whether a field dnolto

association with voluminous _ ..-,..tlor. 0.., _o - ,, ,.. - ,.85 n,norbnenl.@
Voloanio Sequeooe, andoolte tO

coeval intermediate vol_anics s.r....dr. Oo0....;, dn...
Mexico [11]

is present (San Juan field), _. Oll,ooon. ,,,,-,_o,,, _,,. ,_ ,._ . ,.. .o_,.,_,on,
ambiguous (Sierra Madre sam_uan,on°nat.,l°., .nd....toColorado [18] qts latltn

Occidental ) or not found
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(Taupo volcanlc zone).

If Cenozoic rhyolltes may be

used as a guide, the Michipieoten

lower volcanic sequence (FVI)

rhyolltes, whlch are .

characterized by a continuous

spectrum of silica compositions

and relatively high ratios of

alumina and llme to iron and the

TIBLI 3

LOVll CTCLI NZCEZPZ¢OTII IHTOLZTI$ (Fll)

Dominant (&1203 * CaO)/

3102 ranio (reO t * Ilkalll)

£sloolated

volaanlcs

Lov-sll_oa type 70-73 vt.S 1.69 - 2._ m2noe enriched
basa2t, daatte

Hl_k-ll12oa type 71 _ 78 1.67 - 2.28 llnor snrlobod
basalt, dlolte

alkalis (Table 3), are more likely to be subduction-related than

intracontlnental rift-related. The Taupo volcanic zone and neighboring

Kermadec-Tonga island arc system [19] offer perhaps the most appropriate

plate tectonic analogue. At this convergent plate margin, rhyolitic

pyroclastlc rocks erupted from the New Zealand continental crust actually are

deposited largely on the adjacent sea floor [20], which also is the

depositional site for tholeiites derived from the Kermadec-Tonga island arc.

The resulting ocean floor/continental slope deposits should consist of

interflngering rhyolites and basalts derived independently from continental

and oceanic platforms, respectively.

A similar tectonlc-depositional model may explain the so-called cyclical

mafic to felsic stratigraphic relationships present in the Michlpicoten belt.

The presence of pre-existing granitoid crust flanking the belt and the

well-known compositional similarity between Cenozoic island arc tholeiites

and Archean greenstone belt tholeiites [21], such as those present in the

Michipicoten belt [22], support this interpretation. However, the existence

of subaerial and shallow subaqueous deposltional environments for some

Michipicoten volcanic, volcanlclastic and sedimentary units requires either

intermittent, local emergence of the volcanic pile or the existence of at

least small continental blocks underlying parts of the belt.
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A knowledge of the deep structure and geometry of greenstone belts is

fundamental to tectonic models of Archean evolution. In the Canadian

Shield long linear granite-greenstone terranes of generally low

metamorphic grade alternate with temporally-equivalent metasedlmentary

belts of higher grade (Fig. 1). The focus of geophysical investigations

of these tervanes has been to examine geometries and contact

relationships within individual terranes, and to look at the broader and

deeper aspects of structure and inter-terrane relationships.
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Figure 1 - Structural province map of Canadian Shield showing

distribution of gceenstones, subprovinces of Superior province and

Yellowknife greenstone belt of Slave province.

Major greenstone beltJs ace characterized by positive gravity

anomalies in the range 15-30 mGal that primarily reflect the relatively

high density mafic and ultramafic metavolcanic components (1). These

anomalies ace sometimes interrupted by negative anomalies caused by

felsic plutons and are poorly developed where high metamorphic grade

basement is present and/or boundaries are gently-dipping. Modelling

reveals that many greenstone belts ace more or less basin-shaPed , some

having deep keels, and that their steep surface boundaries extend to

depth. Model depths of polycyclic greenstones ace 2-8 km and

non-polycyclic are 3-12 km (1). The generally smaller depths of the
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former have been attributed to granitic intrusion decreasing vertical

extent by stoping (Fig. 2), or to listric normal faulting or thrusting

(I). Models indicate abrupt changes in depth of up to ~I0 km between
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Figure 2 - Gravity

model of Birch-Uchi

greenstone belt,

Wabigoon subprovince

suggestive of removal

of roots of belt by

magmatic stoping and

partial melting

(20). Densities

(g/cm s) are

indicated.

supracrustals of the Wawa greenstone and Quetico metasedimentary terranes

and point to a major faulted contact (2). Granitic intrusions at and

within boundaries of greenstones are associated with prominent negative

gravity anomalies. Modelling indicates that they have depths ranging

from 2-16 km with depths in the middle of the range being characteristic

(3,4). Generally, the contacts of the granites are modelled as steeply

dipping. Some granites extend several kilometres deeper than adjacent

greenstones but in other cases greenstones are interpreted to underlie

the granite. For example, interpretation of a combined gravity-seismic

study of the Aulneau batholith of the Wabigoon subprovince suggests that

it is floored by up to 10 km of greenstones (3). Gravity studies in

Wabigoon subprovince have contributed to classifying Branites into

epizonal sheets and deep diapiric batholiths intruded in two separate

periods (4).

Regionally, greenstone belts generally correspond to magnetic lows

and associated granites to magnetic highs (5,6). Magnetization studies

(6) indicate values that are generally < 0.05 Alm for greenstones and

> 0.05 Alm for granites. Linear positive anomalies within the English

River gneiss belt have drawn attention to pyroxene amphibolite gneisses,

probably derived from metavolcanics (7). Their occurrence is significant

in that they are in an area where volcanism is thought not to have been

important. Aeromagnetic shaded relief maps have been used to assist in

mapping surface geology in the Abitibi greenstone belt (8). Various

features correlate with diorite-gabbro and peridotite-serpentinite

intrusions, diabase dykes, major faults, iron formations and zones of

contact metamorphism around granitic intrusions. The magnetic signature

of the Abitibi belt, however, is not noticeably different from that of

the bordering terranes. Modelling has been limited. Interpretation of a

300 km N-S profile across the Abitibi belt (8) indicates that the

greenstones extend to a maximum depth of 13.6 km in the south, with an

average depth of N9 km compared to 6 km in the north (Fig. 3). This

agrees with seismic refraction results that suggest the bottom of the

belt dips southward increasing in depth from 6 to 14 km (9). Surface

magnetic units over granites of the Wabigoon belt have been modelled as

extending to the intermediate discontinuity (16-19 km) with an increase

in magnetization occurring at a few kilometres depth (6). Magnetization

is low or absent below the discontinuity.
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Figure 3 - Aeromagnetic (8) and seismic (9) interpretations of Abltibi

greenstone belt.

Seismic reflection studies within the Aulneau batholith and adjacent

greenstones (10,11) have mapped a near-vertical contact between granite

and greenstone to a depth of several kilometres (confirmed by later

gravity studies) and a vertical fault zone. Although there are no

detectable velocity differences between the greenstones and granites, the

imp_edance contrast is sufficient to produce rAcnEn{_.hl_ P_f1_rt_nn, frnm

the near-vertical contact. The lower surface of the batholith, as

interpreted from gravity, did not produce reflections, perhaps due to

its undulatory nature (12). There is also a poor correlation between the

average depth of the Yellowknife greenstone belt as determined from

seismic (~I0 km) and gravity (~3 km) studies (13,14). In contrast,

the seismic refraction survey (9) across the Abitibi belt yielded a

geometry for the bottom of the belt similar to that based on magnetic

interpretation (8). The seismic investigations in the vicinity of the

Aulneau batholith (10,11) also detected several deep horizontal or

near-horizontal reflectors. The most prominent reflectors are at

intermediate depths of about 19 and 22 km and the Moho at 38 km. The

three reflectors appear to be continuous beneath the granite and

greenstones suggesting that complex structure, which typifies the upper

crust, is absent at depth. A similar picture of the Wabigoon crust has

been found by long-range refraction - wide angle reflection experiments

(15,16), but in the Quetico metasedimentary belt to the south no sharp
boundaries are found within or at the base of the crust which is about

40-42 km thick (16). In the English River gneiss belt to the north

seismic refraction studies indicate thinner crust with an average

thickness of 34 km (17). The average depth of the intermediate

discontinuity remains about/ the same (~18 km). In detail, the Moho is

upwarped by roughly 8 km in the northern part of the belt, whereas the

intermediate discontinuity exhibits a complementary downwarp with an

amplitude of 10 km. Re-examination of the orginal data (12) indicates

that the axis of this proposed warping lies close to the northern margin

of the gneiss belt where it coincides with a sedimentary basin.

Magnetotelluric investigations have been carried out in the western

Wabigoon belt (18). A 3.9 km thick near-surface resistive zone under the

metavolcanics is considerably less resistive (21,300 Q-m) than one 7.4

km thick under the granitic gneiss (3,280,000 g-m). It suggests that

crust underlying metavolcanic rocks is partially fractured and contains

saline fluids and/or that the metavolcanics extend throughout the

resistive zone. Heat flow studies reported from several Precambrian
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shields indicate that the average heat flow in greenstones is roughly 10%

lower than in crystalline terranes (19). Heat generation data from the

Churchill and Superior provinces of the Canadian Shield indica%e that

greenstones are approximately 7 km thick.

A general conclusion is that greenstone belts are not cootted" in deep

crustal structures. Geophysical techniques consistently indicate that

greenstones are restricted to the uppermost I0 km or so of crust_and are

underlain by geophysically normal crust. Gravity models suggest that

granitic elements are similarly restricted, although magnetic modelling

suggests possible downward extension to the intermediate discontinuity

around -18 km. Seismic evidence demonstrates that steeply-dipping

structure, which can be associated with the belts in the upper crust, is

not present in the lower crust. Horizontal intermediate discontinuities

mapped under adjacent greenstone and granitic components are not

noticeably disrupted in the boundary zone. Geophysical evidence points

to the presence of discontinuities between greenstone-granite and

adjacent metasedimentary terranes. Measured stratigraphic thicknesses of

greenstone belts are often twice or more the vertical thicknesses

determined from gravity modelling. Explanations advanced for the

discrepancy include stratigraphy repeated by thrust faulting and/or

listric normal faulting (i), mechanisms which are consistent with certain

aspects of conceptual models of greenstone development. Where repetition

is not a factor the gravity evidence points to removal of the root zones

of greenstone belts. For one region, this has been attributed to

magmatic stoping during resurgent caldera activity (20).

Geophysical studies in the Canadian Shield have provided some

insights into the tectonic setting of greenstone belts. Much work,

however, remains to be done, particularly in the use of geophysics in

evolutionary models of greenstone development. Future needs include

detailed, integrated studies, the introduction of relatively new methods

such as Vibroseis seismic reflection, greater use of magnetotellurics and

the application of other electromagnetic methods such as very low

frequency (VLF) surveys.
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Terranes within Archean shields can be classified as granite-greenstone

megabelts, contemporaneous sedimentary megabelts (i) and basement enclaves

within either of the above (2,3). Stratigraphic and geochronological work in

the Superior Province has shown the granite-grsenstone megabelts represent

proximal volcanism, sparse deep water clastic sedimentation, and late alluvial

fan-submarine fan sedimentation(4). The sedimentary megabelts represent

stratigraphically equivalent deep water sedimentation of wacke-pelite couplets

(5), submarine fan conglomerates and minor distal facies volcanism(6). Basement

enclaves include meta-igneous and metasedimentary gneiss and fragmented

metavolcanic relics with poorly preserved primary textures.(2,7).

Greenstone belts of Australia have been subdivided into )3 Ga platform-phase

greenstones and <3Ga rift-phase greenstones (8). Platform phase units are basal

komatiite flows and tholeiitic flows with an upper unit of minor pyroclastics.

Volcanism in the platform phase is typified by abundant pillowed amygdular

flows, overlain by minor airfall tuff and relatively distal debris flow

volcaniclastic units. Sedimentary units include chert, quartzite, and

stromatolitic carbonates with minor wackes, indicative of shallow water

platform sedimentation (9). Examples in the Superior Province, generally about

3 Ga old (i0) include quartz-rich wackes in the lower sequence at North Spirit

Lake in the Sachigo Subprovince (ii), quartzites with fuchsite clasts in the

lower sequence of the Wabigoon Subprovince at Armit Lake (12), and carbonate-

rich sediments in the Lumby Lake greenstone belt (13) within the Wabigoon

Diapiric Axis basement enclave (3). Volcanologically one can conclude from the

thickness of the shallow water volcanic rocks and sediments that accumulation

took place on a shallow platform (9) and as well, large scale subsidence kept

pace with the rate of accumulation of volcanic rocks.

Rift-phase greenstones are relatively deep water amygdule-poor pillowed

tholeiites succeeded upward by vesiculated pillowed flows and calc-alkaline

pyroclastic and volcanoclastic units (8). Considering the maximum water depth

for pyroclastic erutions (14) and the thickness of pyroclastic sections in many

rift-phase greenstone belts, Ayres (15) has suggested many Plinian eruption

columns became subaerial. Classically (15) most Archean pyroclastic units were

considered to have been deposited subaqueously. Recent studies have shown

however that many Archean pyroclastic units were deposited subaerially (16,15).

Sedimentologic studies of rift-phase greenstones show some deep-water clastic

deposits(17), but increasingly shallower water deposits (alluvial fan) at

stratigraphically high levels. The structural pattern in rift-phase belts is

alternating synclinoria and anticlinoria either breached by diapirism or

sheared out (8). Most Superior Province greenstone belts younger than 2.9-2.8

Ga (18) are probably rift-phase based on the following, a)structural style with

synclinoria dominating with only rare dome and basin structures, b)

Quartz-rich and carbonate rich sedimentation is scarce in the Abitibi (4),

kWabigoon(20), and younger ((2.9Ga) sequences of the Uchi (18) and Sachigo

(11,18) Subprovinces. c) Volcanism is typified by bimodal tholeiite-rhyolite

sequences (21) with shoaling upward attributes (18,4). Evidence for small

scale operation of rift-related volcanism is seen in the Six Mile Lake cycle at

Sturgeon Lake (22) where a tholeiitic basalt-calcalkaline rhyolite sequence

2755 Ma (23) is rich in incompatible elements relative to later sequences and

is cut by abundant mafic dikes assumed to feed the uounger (2718Ma) (24) cycles

related to wide-scale rifting.

A survey of volcanic cyclicity (20) reveals the following types of cycles

within the Superior Province. (+=fractionation relation; -=no fractionation

KOM =komatiitic_ TH=tholeiitic: CA=calc-alkaline_ ALK=alkaline magma clans

I)KOM Perid Kom +dacite 4)TH bas + andes - Ca bas + rhy - ALK

2)KOM Perid.kom - TH bas + rhy - 5)CA bas + rhy

-CA bas + rhy -ALK

3)TH bas + andes - Th andes - Ca dac 6)TH bas - CA dac + rhy - THbas

+rhy

Increasing stratigraphic height to the right in each entry.

Cycle types 3,4, and 5 above were formerly thought to represent

fractionation sequences,but recent work has shown that many are bimodal(21).

The fact that the above cycle types are bimodal has profound volcanologic and

petrogenetic implications in that the bimodalism is not simply the paucity of

intermediate composition magmatic liquids. Trace element geochemistry and

field eyidence suggests, when corrected for unerupted volume in zoned magma
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chambers,and loss of vitric fines in high level winds during Plinian eruptions

are made, preserved volumes of felsic volcanics in the Archean represent _ 15%

of the original felsic magma (21). In effect, we concluded that Archean

bimodal volcanism represents subequal volumes of mafic and felsic magma which

are involved in greenstone belt volcanism.

Determination of paleoenvironment (above), eruption type, eruption rate,

magma chamber size and type, developmental processes, and the life span of

individual volcanoes places many genetic constraints on greenstone belt

tectonics. In mafic sequences subequal volumes of pillowed and massive flows

(18) suggest eruption by sheet flow processes (25) dominate over eruption from

shield volcanoes (18). In felsic sequences the volumetric dominance of

ignimbrites (21) and the notion that sedimentary basins contain large amounts

of tephra suggest Plinian eruptions were dominant in the Archean. Many Plinian

eruptions produced subaerial deposits on local volcanic islands (18.19,15).

Vulcanian eruptions are subordinate, they produce less widespread deposits -

examples include the Skead Group (26) and the Lake of the Woods area (27).

This eruption type is often the result of less volatile-rich magmas relative to

Plinian systems (28) interacting with near-surface water. The deposits are

generally less widespread in extent than many Plinian deposits.

Eruption rates of Archean volcanoes can be determined in an approximate

and indirect fashion. Sheet flows (25) a greater mean flow thickness than in

Phanerozoic analogues (18) and the presence of lava plains (29) in Archean

mafic sequences suggest a more rapid eruption rate than in Phanerozoic

analogues (30). Phanerozoic ignimbrite systems have volumes in the 101-102 km 3

range (31) with exceptional examples in the 103-104 km 3 range (31,32).

Phanerozoic felsic volcanoes had a life-span generally not exceeding 1.5 Ma

(18) but many Archean felsic edifices apparently existed for 10-20 Ma(18).

The preserved volume of felsic ignimbrites (recalculated to compensate for

unerupted material and loss of vitric fines, but ignoring compaction)

suggests existance of felsic magma chambers on the order of 103 km 3 (21)

rivalling those of the largest Phanerozoic systems (28,29). When integrated

with data on the lifespan of Archean volcanoes of 10-20 Ma, Archeam felsic

eruption rates were large, but not as large as those seen in Archean mafic

systems.

Volcanological and trace element geochemical data can be integrated to place

some constraints upon the size, character and evolutionary history of Archean

volcanic plumbing, and hence indirectly, Archean tectonics. The earliest

volcanism in any greenstone belt is almost universally tholeitic basalt.

Archean mafic magma chambers were usually the site of low pressure

fractionation of olivine, plagioclase and later Cpx_ an oxide phase during

evolution of tholeitic liquids (33 and references therein). Several models

suggest basalt becoming more contaminated by sial with time (33,34). Data in

the Uchi Subprovince shows early felsic volcanics to have fractionated REE

patterns (33)followed by flat REE pattern rhyolites. This is interpreted as

initial felsic liquids produced by melting of a garnetiferous mafic source

followed by large scale melting of LIL-rich sial (33). Rare andesites in the

Uchi Subprovince are produced by basalt fractionation, direct mantle melts and

mixing of basaltic and tonalitic liquids(33). Composite dikes in the Abitibi

Subprovince (35) have a basaltic edge with a chill margin, a rhyolitic interior

with no basalt-rhyolite chill margin and partially melted sialic inclusions.

Ignimbrites in the Uchi (16) and Abitibi (36) Subprovinces have mafic pumice

toward the top. Integration of these data suggest initial mantle-derived

basaltic liquids pond in a sialic crust, fractionate and melt sial. The

inirial melts low in heavy REE are melts of mafic material, subsequently

melting of adjacent sial produces a chamber with a felsic upper part underlain

by mafic magma.

Compositional zonation of the overlying felsic magma develops with time (31),

resulting in Plinian eruption through roll over (37) or volatile

supersaturation(38).

Numerous arguments suggest widespread volcanism-related subsidence kept pace

with the rate of eruption: a) The preservation of felsic sequences rather than

the rapid erosion common in Phanerozoic terranes (39) b)Minimum water depth for

pyroclastic activity (14) vs preserved stratigraphic thickness of subaqueous

pyroclastic units (15)i.e. sections are much thicker than maximum water depth
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for eruption - therefore subsidenceoccurred, c) Lateral extent of 30-50 km

for stromatolitic carbonates (40) in the Uchi subprovince,lateral extent of

30-50 km for shallow water silicified evaporites (41) and lateral extent and

high eruption rate for shallow water environment mafic plains would have

rapidly become subaerial unless subsidence kept pace(18). Isostatic

calculations (42,43) suggest lava plain eruptions produce lesser crustal

loading than central vent eruptions and less isostatic subsidence. Models

involving sialic substrate to lava plain systems produce (42) sufficient

subsidence to just maintain volcanic piles at sea level. Therefore we conclude

a) subsidence kept pace with volcanism, b)subsidence was regional in extent, c)

it is difficult to envision a sagduction style of subsidence (44) producing

subsidence over a large area consistent with the great areal extent of the main

contributor to the subsidence- the mafic lava plains. Subsidence was more rapid

during mafic volcanism slowing during felsic volcanism.

The great volumes of Archean rhyolites and bimodal nature of rift-phase

volcanism mitigates against an island arc or back-arc basin analogue where

rhyolite is scarce (39 and references therin). Both continental arcs and

continental rifts have sufficient volumes of felsic volcanism to compare to

greenstone belts. The sediment-filled grabens associated with the Rio Grande

Rift (45) offer a possible modern analogue as do the continental intra-arc

depressions (39).
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Geology, RAU, P.O. Box 524, Johannesburg 2000, S. Africa) J.H. de Beer (NPRL,

CSIR, P.O. Box 395, Pretoria 0001, S. Africa) and E.H. Stettler (Geological

Survey, Private Bag X112, Pretoria 0001, S. Africa)

I. GEOLOGICAL CHARACTERISTICS OF ARCHAEAN CRUST

Two types of Archaean crust are commonly recognized: I) low-grade granite-

greenstone terranes and 2) high-grade gneiss terranes. Generally high-grade

terranes are viewed as being distinct from typical low-grade granite-greenstone

terranes with which they are often associated. Three models have been proposed

to explain the relationship between the two types of terranes (I). The first

model considers high-grade terranes to be basement to younger low-grade green-

stone belts. The second model regards the evolution of low-and high-grade

terranes as coeval but in different environments. The third model (as sup-

ported here) is that the low-grade granite-greenstone terranes and the high-

grade gneiss terranes represent cross sections through Archaean crust which

was subjected to plate tectonic processes and, in particular, to the collision

of granitoid continents. The detailed examination of well-exposed Archaean

terranes at different metamorphic grades, therefore, is not only an important

source of informationabout the crustal levels exposed, but also is critical

to the understanding of the possible tectonic and metamorphic evolution of

greenstone belts with time. Integration of this information and disciplined

acquisition of critical data from suitable areas will provide the necessary

answers to the applicability of plate tectonics in these times.

II. RELATIONSHIP BETWEEN ARCHAEAN LOW- AND HIGH-GRADE TERRANES IN THE

NORTHERN _VAAL CRATON

Many features of a metamorphic and deformational transition from a typical

low-grade granite-greenstone terrane to a high-grade gneiss terrane are illus-

trated in the crustal section of the northern portion of the Kaapvaal Craton

over the 60 km between the Pietersburg Greenstone Belt and the granulite facies

Southern Marginal Zone of the Limpopo Belt (Fig. I). In this section, steeply

dipping, typical greenstone belt lithologies occur at higher and higher grade

moving from south to north. In the south, the Pietersburg Belt comprises an at

least 3450 Ma mafic, felsic and ultramafic volcanic and volcano-sedimentary as-

semblage (the Pietersburg Group) unconformably overlain by a sedimentary assem-

blage (the Uitkyk Formation), probably deposited between about 2800 Ma and 2650

Ma. The Pietersburg Group is surrounded by the approximately 3500 Ma tonalitic

and trondhjemitic Baviaanskloof Gneiss and is intruded by the approximately

2800 MaHout River Gneiss. All these units are intruded by approximately 2650

Ma, largely undeformed, granodioritic plutons. Metamorphic grade within the

Pietersburg Belt increases from greenschist facies in the southwestern and cen-

tral parts to amphibolite facies in the northeast, consistent with the regional

metamorphic pattern.

North and northeast of the Pietersburg Belt are situated mafic, felsic and

ultramafic volcanic and sedimentary rocks of the Rhenosterkoppies and Suther-

land Greenstone Belts. Both belts are surrounded by the Baviaanskloof Gneiss.

The ages of the lithologies within these belts are unknown but both belts have

been metamorphosed under amphibolite facies conditions.

Typical greenstone belt lithologies can be followed uninterruptedly across

the transition from amphibolite facies to granulite facies within the Southern

Marginal Zone where they are highly attenuated and boudinaged in the Baviaans-
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kloof Gneiss. These assemblages are int=uded by the approximately 2650 Ma de-

formed Matok granodioritlc pluton and the undeformed 2450 Ma Palmietfontein

granite.

The transition from the low-grade granite-greenstone terrane to the South-

ern Marginal Zone is not only reflected by an increase in the grade of metamor-

phism but also by an increase in the intensity of deformation. The structural

grain of the entire region trends east-northeast with an almost vertically dip-

ping schistoscity or gneissoscity. In the Southern Marginal Zone, the disten-

ded nature of the granulitic greenstone remnants is in sharp contrast to the

mere continuous outcrop pattern of the greenstone lithologles to the south.

III. METAMORPHIC EVOLUTION OF THE _OUTHERN MARGINAL ZONE

The two-fold division of greenstone belts proposed by Binns et el. (2) for

the eastern Yilgarn Block can be applied to the northern portion of the Kaap-

vaal Craton. Areas of static metamorphism are of low-grade with little internal

strain and are restricted to the central and southwestern portion of the Pie-

tersburg Belt. Areas of dynamic metamorphism are of medium- to high-grade and

are highly strained. These areas include the northeastern part of the Pieters-

burg Belt as well as both the Rhenosterkoppies and Sutherland Belts. Areas with

intermediate characteristics occur within both the Pietersburg and Sutherland

Belts. Geophysical data indicate that the thickest greenstone successions

occur under areas of static _metamorphism.

Peridotitic komatiite occurring in areas of static metamorphism within the

Pietersburg Belt is characterized by olivine phenocrysts which have been com-

pletely replaced by serpentine or chlorite.: In equivalent rocks subjected to

dynamic metamorphism, olivine phenocrysts and spinifex textured olivine remain

unaltered. This relationship implies that the volcanic rocks in the hlgh-grade

domains did not suffer alteration equivalent to that in the low-grade domains.

Igneous olivine, therefore, transformed directly to metamorphic olivine without

undergoing prior serpentinization. Regional metamorphism in the northern Kaap-

vaal Craton was:_:not progressive but rather the main phase of recrystallization
did not occur until peak metamorphic conditions had been established within

formerly little altered greenstone sequences (2).

The crustal behavior of the entire northern portion of the Kaapvaal Craton
must have been consistent with the observation that the rocks of the Southern

Marginal Zone were depressed into deep crustal levels. This movement implies

that the low-grade terranes were probably depressed in a sympathetic manner.

In the Southern Marginal Zone (Fig. 2), the maximum prograde conditions (P>9.5

kb and T>800°C) reached during this tectonic event are recorded by the assem-

blage garnet + hypersthene + quartz + plagioclase +/- kyanite +/- biotite in

metapellte. These conditions were followed by rapid, nearly isothermal, decom-

pression between approximately 2700 Ma and 2650 Ma, recorded by decompression

textures of cordierite and hypersthene after garnet. P-T conditions of this

decompression event were T=800°C and P decreasing to 7.0 kb. The Matok pluton

was emplaced during the isothermal decompression. The southern margin of this

dehydrated terrane was then subjected to a regional encroachment of CO2-rich
hydrating fluids before approximately 2450 Ma, the time of emplacement of the

Palmietfontein granite. This encroachment produced the retrograde orthoamphi-

bole isograd defined by the reactions: hypersthene + quartz + H20 = anthophyl-

lite and cordierite + H20 = gedrite + kyanite + quartz. These reactions occur-

red at T=650°C to 600°C and a total P less than 6 kb at PH20 = 0.2Pto al" Com-
pletely hydrated and recrystallized rocks south of this isograd are c_aracter-

ized by the assemblage anthophyllite + gedrite + kyanite + biotite + quartz +

plagioclase. The fluids responsible for rehydration are believed to have been

derived from hydrated granite-greenstone lithologies.
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A parallel P-T-time scenario affected the rocks of the Central Zone of the

Limpopo Belt immediately to the north, indicating that the present erosional

level of both the Central and the Southern Marginal Zones is an isofacial sur-

face of constant P-T-time conditions.

IV. TECTONIC DEVELOPMENT OF THE NORTHERN KAAPVAAL CRATON

The lack of correlation between metamorphic grade and the distribution of

granitoid plutons precludes the development of the regional metamorphic pattern

as a result of granite emplacement. Also, the overall increase in the grade

of metamorphism and the distribution of relict igneous minerals suggest that

the metamorphic evolution of the high-grade Southern Marginal and Central Zones

of the Limpopo Belt were coeval with that of the adjacent granite-greenstone

terrane to the south. The ubiquity of 2700-2600 Ma ages throughout the north-

ern and central portions of the Kaapvaal Craton suggests that the metamorphic

pattern arose during a very wide-spread tectonic event which was linked with

the generation and remobilization of granitic rocks. This relationship pre-

cludes the existence of different geothermal gradients for greenstone belts

and for high-grade gneiss terranes and suggests that the northern portion of

the Kaapvaal Craton represents a cross section through Archaean crust.

Gravity and resistivity data indicate that the Pietersburg, Rhenosterkop-

pies and Sutherland Greenstone Belts are shallow features, rarely exceeding 5

km in depth. 5 km depth is in marked contrast to the great thicknesses of

various steeply dipping lithologic successions in the area measured across the

stratification (up to 25 km) and to the depth at which these rocks were meta-

morphosed. These observations indicate that major crustal thickening took

place. The existence of high-grade assemblages at the surface overlying crust
of thickness of 40 km indicates that thickened crust in excess of 80 km existed

approximately 2650 Ma ago. It is proposed that this crustal thickening was

achieved by thrusting in a zone of crustal convergence in which two or more

continental fragments collided, analogous to the tectonic activity presently

going on in the Himalayas. This model is supported by isotopic and lithologic

evidence for the existence of exotic terranes in this area. Possibly some of

the thrust faults along which this thickening occurred may be recognized in

modified form as "straightening zones". The depressed portions of the crust

were highly deformed during this compressional period and the rocks were sub-

jected to high-grade metamorphism so that new isograds were established, dis-

cordant to the imbricate thrust structures. Originally lower crustal dehydra-

ted rocks were largely unaltered metamorphically at great depth but upper

crustal hydrated rocks that were buried to similar depths underwent rapid meta-

morphism. Large volumes of granitoid rocks were also created. Later uplift

giving rise to the observed decompression textures (+/- 0.5 cm per year) was

achieved by a combination of melt enhanced "surge tectonics" (3), isostatic

adjustment of the thickened crust to erosion and the collapse of the thickened

crust under its own weight. The expression of this uprising and deforming mass

is thrusting radially out of the high-grade zone recognized today as the Lim-

popo Belt. Continental collision and mountain building about 2650 Ma ago must

be a significant factor in the formation of the unparalleled gold mineraliza-

tion of the Witwatersrand Basin immediately to the south.

(I) Binns, R.A., Gunthorpe, R.J. and Groves, D.I. (1976) in B.F. Windley (Ed),

The Early History Of The Earth, Wiley, New York, p. 303-313.

(2) Percival, J.A. and Coe, K. (1981), Precamb. Res., __14,p. 315-331.

(3) Hollister, L.S. and Crawford, M.L. (1986), Geology, 14, in press.
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Although in common geological usage there is considerable

ambiguity over the definition of greenstone belts which are

historically regarded as long and narrow in shape, Archaean in

age and composed of volcanic and sedimentary sequences at

greenschist facies. This definition remains true for many of what

are commonly regarded as greenstone belts but others differ

significantly, particularly in shape and metamorphic facies. For
this reason the term 'succession' is prefered for greenstones

which are not particularly linear. In the following discussion it

is our intention to maintain 'greenstone' as a useful term and

for that reason we specifically aim to exclude high-grade

supracrustal gneiss terrains such as those of the central zone of

the Limpopo belt and early Precambrian supracrustal sequences

such as the 3Ga Pongola, the 2.7Ga Witwatersrand and the 2.4Ga

Ventersdorp from any definition of greenstone successions. We

also aim to include all commonly accepted greenstone successions.

The following points are of relevance to the definition of

greenstone belts:

I. Most commonly accepted greenstone successions are of Archaean

age but a few younger belts have been reported from

Wisconsin, USA (i) and northern Quebec, Canada (2).

2. Although many greenstone successions are long, linear and

narrow (e.g. Pietersburg and Murchison, Kaapvaal craton) many

others have more irregular shapes (eg. Bulawayan, Zimbabwe craton

and Pilbara, Western Australia). The word 'belt' therefore is

inappropriate for some greenstone successions.

3. Volcanic rocks are ubiquitous components whereas sediments may

be of secondary importance. The volcanics frequently include

komatiitic rocks. Intrusive igneous rock units such as layered

complexes, dykes and sills may be present.
4. Greenstone successions occur at metamorphic conditions from

sub-greenschist to granulite facies and the colour prefix,

refering to the greenschist facies, is unfortunate.

5. Deformation intensity within the greenstone successions is

variable.

6. Greenstone successions are always intimately associated

with and surrounded by trondhjemite-tonalite-granodiorite-granite

granitoids.

We tentatively suggest the following definition:

Greenstone successions are the non-granitoid component of

granitoid-greenstone terrains. Volcanic rocks are an essential

component, some of which are usually komatiitic. Sedimentary

rocks are commonly present and igneous intrusive units may exist.

The greenstone successions are linear to irregular in shape and

where linear they are termed belts. The greenstone successions

may occur at all metamorphic facies and are heterogenously



GREENSTONE BELTS: THEIR COMPONENTS AND STRUCTURE

Vearncombe, J.R. et al.

deformed. Most greenstone successions are Archaean in age.

Greenstone successions comprise a wide variety of rocks,

dominated by volcanics, which are usually altered and deformed.

Alteration of volcanic and other rock types is manifested by

hydration with variable silicification (3), carbonate-isation (4)

or silica loss (5) as well as isochemical metamorphism.

Alteration itself is temporally and spatially variable, Smith and

Erlank (6) have described possible early sea floor alteration of

komatiitic rocks from Barberton and carbonate-isation in

Murchison is patchy and syn- to post-tectonic. This alteration

constrains identification of original rock-types and the use of

whole rock chemistry. This restriction added to the problems of

equating area of surface outcrop with rock volume means that

estimates of greenstone lithological proportions must be treated

circumspectly. However, greenstone successions commonly comprise

the following primary lithologies: komatiitic, mafic and felsic

volcanics, cherts, banded iron formations, shales, graywackes and

quartz arenites. Less commonly limestones (including

stromatolites), arkose, ultramafic and mafic layered complexes,

quartz-feldspar porphyries and quartz tholeiite dykes are

present.

The identification of the environment of emplacement of

greenstone igneous rocks is highly problematic. Subvolcanic

intrusions exhibit many features almost indistinguishable from

true lavas. Skeletal crystal growths, commonly grouped under the

all-embracing term of 'spinifex', are an important textural form

in these rocks and these textures, in abundance, are restricted

to Archaean greenstone successions. These textures are indicative

of rapid crystal growth under supersaturated conditions (7) and

need not be restricted to lava flows. In fact, the inordinatly

thick cumulate zones associated with some spinifex-bearing rock-

types preclude these being lava flows in the currently accepted

sense and the non-genetic term 'cooling unit' has been used to

describe these layered rocks which may represent lava flows or

subvolcanic intrusions. The recognition of crescumulate type

crystal growth and rhythmically developed spinifex units indicate

a variety and complexity of mechanisms which have given rise to

these textures and criteria should be established to permit the

environment of emplacement to be determined more precisely.

Symmetry of structures and spinifex textures encountered in some

units may be indicative of dyke emplacement.

Until recently, greenstone research was largely oriented

towards deducing a unifying model, subsequently heterogeneity has

become the key-word. In essence, greenstone belts are of

different ages and formed in different tectonic situations.

Groves and Batt (8) recognise both younger and older greenstone

successions in Western Australia in two distinct environments,

determined on the basis of volcanic constituents, sedimentary

facies,, mineral deposits and tectonic style, to which they gave a

215
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genetic interpretation as rift-phase or platform-phase

greenstones. Whereas this is a major development in understanding

Australian greenstones the division of other greenstone

successions into rift- and platform-phase is tenuous,

particularly for those of the Kaapvaal craton. The Murchison

greenstone belt, for instance, has characteristics of both rift-

and platform-phase greenstones.

The Barberton greenstone belt, comprising the lower

komatiitic to felsic units of the Onverwacht Group and overlying

deep water sediments of the Fig Tree Group, probably represents a

rift-phase (8) and the overlying Moodies Group with shallow water

quartzites and banded iron formation is typical of a platform-

phase greenstone belt. However, herewithin lies an important

observation on greenstone successions: the environment of

formation can vary within a greenstone. This variation may be due

to either:

i. A progressive evolution in environment. Eriksson (9) has

described the Fig Tree to Moodies group evolution of the

Barberton greenstone belt in terms of an evolving back-arc, or

passive continental margin.

2. The superposition of different environments which are

temporally separate and manifested in the field by an

unconformity.
or 3. Some or all of the units are allochthonous and represent

spatially and/or temporally diverse environments now tectonically

juxtaposed.

Another aspect of the heterogeneity is the recognition of
both continental and oceanic environments. The Mberengwa

(Belingwe) greenstone belt of Zimbabwe rests unconformably on

granitic rocks (10, ii, 12). Basement has also been inferred to

exist beneath other greenstone belts in Australia, Canada and

India (13, 14, 15). Major layered igneous complexes such as Dore

Lake (16) and the Rooiwater, Murchison greenstone belt (17), are

a significant component of some greenst0ne belts. These complexes

have minor ultramafic components, anorthosite-gabbro layers,

magnetitite layers and a highly differentiated and sodic granite.

These complexes are analogous to bodies such as the Bushveld and

are intrusions in a continental environment.

In contrast to the continental environment of some

greenstone successions no proven continental basement exists at

the base of the Barberton greenstone belt and the Onverwacht

Group may be partially of oceanic origin (18). In addition, some

ultramafic complexes may also be ophiolitic (19). De Wit and

Stern (20) have recognised a possible sheeted-dyke complex in the

Onverwacht group. Support for the obducted oceanic origin for

some greenstone rocks comes from the recognition of podiform

alpine-type chromites at Shurugwi (Zimbabwe) (21, 22) and at

Lemoenfontein (Kaapvaal craton) (23). These have textural and

chemical characteristics similar to those recognised in
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ophiolitic complexes of Phanerozoic age.

Historically greenstone structures were regarded as simple

synformal belts between sub-circular rimming granitoid domes.

This relationship has given rise to genetic interpretations that

greenstone belts are pinched-in synformal keels between domal or

diapiric granitoids or between granitoid domes which are the

result of interference folding (24). Unfortunately the paucity of

detailed structural observations and accurately determined

stratigraphic successions mean that few of the assumed synforms

are proven.

In the Kaapvaal craton the Murchison, Pietersburg,

Sutherland, Rhenosterkoppies, Amalia and Muldersdrift belts lack

a gross synformal structure. At Barberton the greenstone

succession comprises several synformal structures separated by

steep reverse faults (25). De Wit (26) and Lamb (27) have

recently described thrusts, some of which emplace Onverwacht

volcanics over Moodies sediments. The suggestion of Anhaeusser

(28) that deformation structures within the Barberton greenstone

belt can mostly be related to granitic diapirism is at variance

with the observed thrust structures and evidence presented by

Ramsay (25), Roering (29) and Burke et al. (30) who note

deformation structures prior to granite intrusion, intrusive

granite contacts oblique to deformation structures and an absence

of deformation structures within the greenstone directly related

to those in the surrounding granitoids.

We suggest that whereas broadly synformal belts may exist

this is not a characteristic of greenstone belts. Many of the

intrusive granitoids are undoubtedly domal but intervening

greenstone belts are not necessarily synformal and the role of

diapirism in controlling the structure of greenstone successions

may be over-emphasised.

In deducing the overall large-scale structural

characteristics of greenstone successions the following general

observations may be relevant:

i. Contacts with the surrounding granitoids can be either

tectonic (31) or intrusive with dykes and veins of granitic rock

in the greenstone belts and a static high T/low P metamorphism

near the greenstone contact with the granitoids suggesting

contact metamorphism by igneous intrusion.

2. Geophysical evidence from a number of belts suggests they are

shallow with vertical depth extents rarely more than 10km and

usually less than 5km (32, 33), figures considerably less than

the proposed stratigraphic thicknesses of these belts. This

shallow depth extent suggests no simple rotation of the usually

upright greenstone belt but instead a truncation which may be a

major decollement zone, recumbent syntectonic granite or a late

intrusive contact.

3. Recumbent fold structures and possible thrusts are relatively
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common and have been described from greenstone successions of the

Zimbabwe craton (34, 35), of the Kaapvaal craton (25, 26, 27),

of the Western Australia shield (36, 37) and the North American

shield (38).

4. Greenstone successions occur as either linear belts or as

irregular shaped units comprising arcuate arms.

5. Late-deformation structures and the present disposition of

primary layering structures in the greenstone successions are

usually upright.

Greenstone successions are composed of deformed and

metamorphosed (including metasomatised) rocks. However despite

the obvious difficulties, many authors have proposed

stratigraphies for greenstone belts, but some have deduced total

stratigraphic thicknesses dramatically in excess of those

predicted by currently accepted models for basin formation (39,

40). Greenstone successions such as Barberton with 17 to 23km

(41), Pietersburg with 21.4km (41) and Abitibi with over 30km

(42) or up to 45km (43) total stratigraphic thickness contrast

with both thinner sequences from other greenstone and non-

greenstone early Precambrian supracrustal sequences such as the

Witwatersrand. It is the greenstone successions with large

stratigraphic thicknesses which are invariably at sub-greenschist

or greenschist facies and without the high grades of metamorphism

that would be expected at the base of these sequences. These

thicknesses represent one of the challenging problems in

greenstone geology.

Possible explanations for the large stratigraphic

thicknesses are as follows:

i. They are an artifact of combining separate sections into a

composite section or are oblique sections.

2. That incorporated within the greenstone belt and incorrectly

interpreted as part of the stratigraphy are layered igneous

complexes, sills and tectonically rotated dykes.

3. The stratigraphic sequences are in fact related to two or more

spatially superimposed but temporally separate and essentially

unrelated events. In the Barberton greenstone belt granite

cobbles in a Moodies Group conglomerate have yielded zircons

giving ages of 3.15Ga (44) contrasting with ages of 3.54Ga (45)

for the stratigraphically lower Onverwacht volcanic rocks. A

major phase of granite emplacement separates these two dates and

a major unconformity may exist at the base of the Moodies Group.

4. They are not true stratigraphic sections but are structurally

repeated by imbricate thrusting and/or folding. To achieve

significant structural repetition by thrusting, folding or both

requires major recumbent tectonics on or above a decollement

plane. -

Whilst explaining large stratigraphic repetition the

recumbent thrust-fold model also predicts metamorphic conditions

at the base of the pile initially at high P/low T and with
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thermal relaxation to medium pressure facies. Bickle et al. (46)

have reported such rocks from the Yilgarn and similar staurolite-

kyanite-bearing rocks occur in the Murchison greenstone belt.

However the very large apparent stratigraphic thicknesses with

associated sub-greenschist or greenschist metamorphism remain

unexplained by horizontal thrust-nappe tectonics. These may
however be explained by repetition above a flat decollement in an

imbricate stack with associated folding. In this situation the

stratigraphy is turned on end and multiply repeated but the

structure remains shallow. Zones of cyclic repetition should be

investigated to determine if the cyclicity is real or the result

of imbricate stacking. Examples of this type of structural

stacking resulting in repetition are provided by Coward et al.

(35) from Matsitama, Zimbabwean craton, Botswana and Martyn (37)

from the Kalgoorlie area in the Norseman-Wiluna greenstone belt
(Western Australia).

References

(i) Schultz, K.J. & LaBerge, G.L. this volume. (2) St-Onge, M.R.,

Hoffman, P., Lucas, S.B., Scott, D.J. & Begin, H.J. this volume.

(3) Paris, I., Stanistreet, I.G. & Hughes, M.J. 1985, J. Geol.

93, 111-130. (4) Pearton, T.N. 1980, The geochemistry of

carbonate & related rocks of the antimony line, Murchison

greenstone belt, with particular reference to their genesis and

to the origin of stibnite mineralization. Ph.D. thesis, Univ.

Witwatersrand. (5) de Wit, M.J. this volume. (6) Smith, H.S. &

Erlank, A.J. 1982, in Arndt, N.T. & Nisbet, E.G. Komatiites, 347-

397. (7) Donaldson, C.H. 1982, in Arndt, N.T. & Nisbet, E.G.

Komatiites, 211-244. (8) Groves, D.I. & Batt, W.D. 1984, in

Kroner, A. Archaean geochemistry, 73-98. (9) Eriksson, K.A. 1980,

Precambrian Res. 12, (i0) MacGregor, A.N. 1951, Trans. geol.

Soc. S. Aft. 54, xxvii-lxxi. (ii) Wilson, J.F. 1973, Phil. Trans.

Roy. Soc. Lond. A273, 389-411. (12) Bickle, M.J., Martin, A. &

Nisbet, E.G. 1975, Earth Planet. Sci. Lett. 27, 155-162. (13)

Archibald, N.J., Bettenay, L.F., Binns, R.A., Groves, D.I. &

Gunthorpe, R.J. 1978, Precambrian Res. 6, 103-131. (14) Baragar,

W.R.A. & McGlynn, J.C. 1976, Geol. Surv. Canada Pap. 76-14,

20pp. (15) Chadwick, B., Ramakrishnan, M. & Viswanatha, M.N.

1981, J. geol. Soc. Ind. 22, 557-569. (16) Allard, G.O. 1970,

Geol. Soc. S. Afr. Sp. Publ. i, 477-491. (17) Vearncombe, J.R.,

Walsh, K.L. & Barton, J.M. Jr. in prep. (18) Anhaeusser, C.R.

1973, Phil. Trans. Roy. Soc. Lond. A273, 359-388. (19) Wuth, M.

1980, The geology and mineral potential of the Oorschot-

Weltevreden schist belt south-west of Barberton - eastern

Transvaal, M.Sc. Thesis, Univ. Witwatersrand. (20) De Wit, M.J. &

Stern, C.R. 1980, Extended abtracts 2nd. Int. Archaean Symp. 85-

86. (21) Cotterill, P. 1969, The chromite deposits of Selukwe,

Rhodesia. Econ. geol. Monogr. 4, 154-186. (22) Stowe, C.W. 1984,

in Kroner, A. & Greiling, R. Precambrian Tectonics Illustrated,

41-56. (23) Smit, A.C. 1984, Trans. geol. Soc. S. Afr. 87, 303-

314. (24) Snowden, P.A. 1984, in Kroner, A. & Greiling, R.

Precambrian Tectonics Illustrated, 135-145. (25) Ramsay, J.G.



22O
GREENSTONE BELTS: THEIR COMPONENTS AND STRUCTURE

Vearncombe, J.R. et al.

1963, Trans. geol. Soc. S. Afr. 66, 353-398. (26) De Wit, M.J.

1982, J. structural geol. 4, 117-136. (27) Lamb, S.H. 1984, in

Kroner, A. & Greiling, R. Precambrian Tectonics Illustrated, 19-

39. (28) Anhaeusser, C.R. 1984, in Kroner, A. & Greiling, R.

Precambrian Tectonics Illustrated, 57-78. (29) Roering, C.R.

1967, Economic geol. Res. Unit. Rpt. 35, Univ. Witwatersrand.

(30) Burke, K., Dewey, J.F. & Kidd, W.S.F. 1976, in Windley, B.F.

The Early History of the Earth, 113-130. (31) Spray, J.G. 1985,

J. structural geol. 7, 187-203. (32) de Beer, J.H., Stettler,

E.H., Barton, J.M. Jr., van Reenen, D.D. & Vearncombe, J.R.

this volume. (33) Thomas, M.D., Losier, L., Thurston, P.C.,

Gupta, V.K., Gibb, R.A. & Grieve, R.A.F. this volume. (34) Stowe,

C.W. 1974, J. geol. Soc. Lond. 130, 411-425. (35) Coward, M.P.,

Lintern, B.C. & Wright, L.I. 1976, in Windley, B.F. The early

History of the Earth, 323-330. (36) Platt, J.P. 1980,

Tectonophysics 65, 127-150. (37) Martyn, J.E. this volume. (38)

Poulsen, K.H., Borradaile, G.J. & Kehlenbeck, M.M. 1980, Can. J.

Earth Sci. 17, 1358-1369. (39) McKenzie, D. 1978, Earth Planet.

Sci. Lett. 40, 25-32. (40) McKenzie, D., Nisbet, E. & Sclater,

J.G. 1980, Earth Planet. Sci. Lett. 48, 35-41. (41) SACS, 1980,

Stratigraphy of South Africa. Handbk. 8., Geol. Surv. S.A. 690pp.

(42) Jensen, L.S. 1985, Geol. Assoc. Canada Sp. Pap. 28, 65-87.

(43) Ayers, L.D. & Thurston, P.C. 1985, Geol. Assoc. Canada Sp.

Pap. 28, 343-380. (44) van Niekerk, C.B. & Burger, A.J. 1978,

Spec. Publ. geol. Soc. S. Aft. 4, 99-106. (45) Hamilton, P.J.,

Evensen, N.M., O'Nions, R.K., Smith, H.S. & Erlank, A.J. 1979,

Nature, 179, 298-300. (46) Bickle, M.J., Morant, P., Bettenay,

L.F., Boulter, C.A. Blake, T.S. & Groves, D.I. 1985, Geol. Assoc.

Canada Sp. Publ. 28, 325-341.



221
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The Steep Rock Group is exposed 6km north of Atikokan, 200km west of

Thunder Bay. It is situated on the southern margin of the Wabigoon Belt of

the Archaean Superior Province, N.W. Ontario. Reinvestigation of the

geology of the Group has shown that the Group lies unconformably on the
Marmion Complex to the east.

This unconformity has been previously suspected, from regional and
mine mapping but no conclusive outcrop evidence for its existence has as
yet been published.

The strike of the Group, comprised of five formations, Basal

Conglomerate, Carbonate, Ore Zone, Ashrock and Metavolcanics is generally
north-northwest dipping steeply to the southwest. Of the 7 contacts

between the Steep Rock Group and the Marmion Complex, 3 expose the
unconformity (the Headland, S. Roberts Pit, Trueman Point), and 4 are
faulted.

At the Headland poorly sorted metaconglomerate with angular clasts of
quartz, tonalite and fine-grained mafic material (dykes and remnant
xenoliths) overlies mafic tonalite, with no evidence for a fault or an
intrusive contact.

^+ +_,^ _ o.._.^..,._ n._.,. .... _....... _ "" ply_ _,,=_. .,vu=,_ r,_, pvv, ,v _u, _=u iT,_tasandstones Ulp stee to the
west overlying pale greenish-white weathered mafic tonalite. The

metasandstones pass upwards within 2Ocm to massive dark grey carbonate.

At Trueman Point, in an exposure similar to the S. Roberts Pit, coarse

angular metasandstone overlies tonalite. However, the contact here is more

diffuse with the top metre of the tonalite breaking down to form a regolith
of angular quartz grains (1-4mm) in a sericite matrix. This matrix is

similar to the matrix in the overlying metasandstone (Fig. 1). These three

outcrops demonstrate unequivocally that the Steep Rock Group was laid down
on the underlying Marmion Complex, which is circa 3 Ga old (Davis et al,
1986).

Figure 1:
Point

Ur_onformity

_Poorly sorted
- metasand stone
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.Weathered Tonalite
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-Hbl

Drawing to illustrate the unconformable contact at Trueman
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Overlying the Basal Conglomerate (O-150m) is the Carbonate Formation

(O-500m) throughout which stromatolites extensively occur.

The Carbonate is a laminated dark bluish-grey massive rock with major
zones of breccia developed close to fault zones and dykes, which are

thought to be feeders for the overlying volcanics.

From a study of 11 stromatolitic outcrops (Wilks and Nisbet, 1985), a

crude stratigraphy within the Carbonate can be set up (Fig. 2).

Carbonstq

Basal Conglomerate

Tomil|t • Complex

a_4mite _ _

m, Final _h _

m Omal_*t

Figure 2: Schematic stratigraphic column of the Steep Rock Group up to the

Ashrock Formation. Note that thicknesses of individual members vary

greatly along strike. Textural symbols not to scale. From Wilks and

Nisbet, 1985 .

Small scale stromatolites occur throughout the unit, but are best

developed near the base. Here simple Stratifera-like stratiform structures

having flat to undulatory laminae develop into pseudocolumnar laterally-

linked structures. These Irregularia-like structures pass upwards into

hemispherical laterally linked stromatolites. Laminae are wavy .5-3.5mm,

and the structures are 5-15cm high and in basal diameter. In places

branching walled and unwalled columnar forms occur, with heights up to
20cm.

In the upper part of the Carbonate giant domal stromatolites occur.

These range from domed structures typically about 3m in diameter to tabular
bodies up to 5m or more long and .75m in stratigraphic height. Near the

top of the unit, small mamiIlose stromatolites form an egg box fabric with

diameters up to 4cm and heights of 1.5cm.
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Overlying the Carbonate is the Ore Zonewhich has been divided into a
lower MnPaint RockMemberand an upper Goethite Member(Jolliffe, 1955).
The MnPaint Rock (3%-18%Mn) is an earthy material with poorly developed
varicoloured banding, madeup of lumps of goethite, hematite, quartz and
chert in a groundmassof the sameminerals with calcite, kaolinite,
pyrolusite and gibbsite. The contact with the underlying Carbonate is
extremely irregular with pinnacles of carbonate protruding into the Paint
Rock. This contact has been interpreted as an ancient karst surface
(Jolliffe, 1955). The MnPaint Rock passes sharply upwards into the
Goethite Member(Mn < .3%) which is a predominantly brecciated lump ore of
goethite (67%) and hematite (21%)with quartz and kaolinite.

Within the Ore Zone thin layers of Buckshot Ore occur. These layers
comprise haematitic pisolites and fragments of haematite set in a lighter
aluminous matrix of kaolinite and gibbsite. This material resembles a
ferruginous bauxite in both outward appearanceand chemical and mineral
compositi on.

Overlying the Ore Zone is the Ashrock. The namerefers to a high-Mg
pyroclastic rock (22%MgO)which makesup to 90%of the unit. Interbedded
within this are thin komatiitic basalt (15%MgO)lava flows.

Within the Goethite Memberand Ashrock, pyrite lenses occur. These
form discontinuous elongate bodies of n_ssive pyrite closely associated
with cherty and carbonaceous beds.

In contact with the Ashrock is the Metavolcanic Formation comprised of
mafic and intermediate metavolcanics and clastic metasediments. This
contact is nowhere exposed, and the Metavolcanics are thought to be
separated from the underlying Ashrock by a structural break. At the
present time they are provisionally included in the Steep RockGroup. The
Group is interpreted as a sequence deposited in an extensional environment
(a rift). With later extension and deformation the MarmionComplexand
overlying rocks up to the Ashrock were tilted steeply to the
west-southwest. The Metavolcanics, which are interpreted as deposits
extruded in the centre of the rift were then folded and thrust up against
the tilted succession. Regional lower greenschist metamorphismof the
Steep Rock Group succeeded this deformation.
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